
keyestudio WiKi

keyestudio WiKi

Dec 06, 2023

KEYESTUDIO DOCS

1 1.Introduction 1

2 2.Kit list 3

3 3.Keyestudio ESP32 Mainboard 5

4 Getting started with Arduino 9
4.1 Windows System . 9
4.2 Mac System: . 32

5 Arduino Project 41
5.1 Download code files and Libraries files . 41
5.2 Project 01: Hello World . 41
5.3 Project 02: Turn On LED . 48
5.4 Project 03LED Flashing . 60
5.5 Project 04: Breathing Led . 65
5.6 Project 05Traffic Lights . 73
5.7 Project 06: RGB LED . 77
5.8 Project 07: Flowing Water Light . 80
5.9 Project 081-Digit Digital Tube . 83
5.10 Project 094-Digit Digital Tube . 89
5.11 Project 108×8 Dot-matrix Display . 92
5.12 Project 1174HC595N Control 8 LEDs . 96
5.13 Project 12Active Buzzer . 100
5.14 Project 13Passive Buzzer . 103
5.15 Project 14: Mini Table Lamp . 106
5.16 Project 15Tilt and LED . 110
5.17 Project 16Burglar Alarm . 114
5.18 Project 17 I2C 128×32 LCD . 116
5.19 Project 18Small Fan . 120
5.20 Project 19Servo Sweep . 124
5.21 Project 20Stepping Motor . 129
5.22 Project 21Relay . 135
5.23 Project 22Dimming Light . 136
5.24 Project 23Flame Alarm . 141
5.25 Project 24Night Lamp . 146
5.26 Project 25Human Induction Lamp . 150
5.27 Project 26Sound Control Fan . 151
5.28 Project 27Temperature Measurement . 155
5.29 Project 28Rocker control light . 159

i

5.30 Project 29Temperature Humidity Meter . 164
5.31 Project 30Ultrasonic Ranger . 171
5.32 Project 31Temperature Instrument . 177
5.33 Project 32RFID . 183
5.34 Project 33Keypad Door . 191
5.35 Project 34IR Control Sound and LED . 201
5.36 Project 35Bluetooth . 214
5.37 Project 36WiFi Station Mode . 226
5.38 Project 37WiFi AP Mode . 230
5.39 Project 38WiFi Station+AP Mode . 236
5.40 Project 39: WiFi Test . 240
5.41 Project 40WiFi Smart Home . 247

6 Getting started with Python 265
6.1 1.Installing Thonny (Important) . 265
6.2 2. Basic Configuration of Thonny . 271
6.3 3.Installing CP2102 driver . 275
6.4 4.Burning Micropython Firmware (Important) . 282
6.5 5.Test Code . 292
6.6 6.Thonny Common operations . 297

7 Python Project 305
7.1 Download code files . 305
7.2 Project 01: Hello World . 305
7.3 Project 02: Turn on LED . 308
7.4 Project 03LED Flashing . 323
7.5 Project 04: Breathing Led . 331
7.6 Project 05Traffic Lights . 338
7.7 Project 06: RGB LED . 343
7.8 Project 07: Flowing Water Light . 349
7.9 Project 081-Digit Digital Tube . 354
7.10 Project 094-Digit Digital Tube . 360
7.11 Project 108×8 Dot-matrix Display . 368
7.12 Project 1174HC595N Control 8 LEDs . 374
7.13 Project 12Active Buzzer . 380
7.14 Project 13Passive Buzzer . 386
7.15 Project 14: Mini Table Lamp . 390
7.16 Project 15Tilt and LED . 397
7.17 Project 16Burglar Alarm . 402
7.18 Project 17 I2C 128×32 LCD . 407
7.19 Project 18Small Fan . 414
7.20 Project 19Servo Sweep . 420
7.21 Project 20Stepping Motor . 426
7.22 Project 21Relay . 434
7.23 Project 22Dimming Light . 439
7.24 Project 23Flame Alarm . 448
7.25 Project 24Night Lamp . 457
7.26 Project 25Human Induction Lamp . 466
7.27 Project 26Sound Control Fan . 470
7.28 Project 27Temperature Measurement . 479
7.29 Project 28Rocker control light . 488
7.30 Project 29Temperature Humidity Meter . 498
7.31 Project 30Ultrasonic Ranger . 508
7.32 Project 31Temperature Instrument . 519

ii

7.33 Project 32RFID . 529
7.34 Project 33Keypad Door . 541
7.35 Project 34IR Control Sound and LED . 553
7.36 Project 35WiFi Station Mode . 567
7.37 Project result . 570
7.38 Project 36WiFi AP Mode . 571
7.39 Introduction . 571
7.40 Project wiring . 572
7.41 Project result . 575
7.42 Project 37WiFi Station+AP Mode . 576

8 Getting started with C (Raspberry Pi) 581
8.1 Install the Raspberry Pi OS System . 581
8.2 Linux SystemRaspberry Pi . 620
8.3 Import the Arduino C library . 638

9 RaspberryPi Arduino 645
9.1 Download code files and Libraries files . 645
9.2 Project 01: Hello World . 645
9.3 Project 02: Turn On LED . 649
9.4 Project 03LED Flashing . 657
9.5 Project 04: Breathing Led . 662
9.6 Project 05Traffic Lights . 669
9.7 Project 06: RGB LED . 674
9.8 Project 07: Flowing Water Light . 677
9.9 Project 081-Digit Digital Tube . 679
9.10 Project 094-Digit Digital Tube . 684
9.11 Project 108×8 Dot-matrix Display . 687
9.12 Project 1174HC595N Control 8 LEDs . 690
9.13 Project 12Active Buzzer . 693
9.14 Project 13Passive Buzzer . 696
9.15 Project 14: Mini Table Lamp . 698
9.16 Project 15Tilt and LED . 702
9.17 Project 16Burglar Alarm . 705
9.18 Project 17 I2C 128×32 LCD . 707
9.19 Project 18Small Fan . 710
9.20 Project 19Servo Sweep . 713
9.21 Project 20Stepping Motor . 716
9.22 Project 21Relay . 720
9.23 Project 22Dimming Light . 722
9.24 Project 23Flame Alarm . 727
9.25 Project 24Night Lamp . 730
9.26 Project 25Human Induction Lamp . 734
9.27 Project 26Sound Control Fan . 736
9.28 Project 27Temperature Measurement . 740
9.29 Project 28Rocker control light . 744
9.30 Project 29Temperature Humidity Meter . 749
9.31 Project 30Ultrasonic Ranger . 754
9.32 Project 31Temperature Instrument . 760
9.33 Project 32RFID . 764
9.34 Project 33Keypad Door . 771
9.35 Project 34IR Control Sound and LED . 776
9.36 Project 35Bluetooth . 784
9.37 Project 35.1Classic Bluetooth . 784

iii

9.38 Project 35.2Bluetooth Control LED . 789
9.39 Project 36WiFi Station Mode . 792
9.40 Project 37WiFi AP Mode . 797
9.41 Project 38WiFi Station+AP Mode . 801
9.42 Project 39: WiFi Test . 805
9.43 Project 40WiFi Smart Home . 811

iv

CHAPTER

ONE

1.INTRODUCTION

Do you want to learn about programming?

As long as you’re passionate about science and dare to explore new things, this kit is surely the best choice for
you. The Keyestudio ESP32 Learning Kit Ultimate Edition mainly contains some common electronic compo-
nents/sensors/modules, a ESP32 mainboard and bread wires are also included.

As many as 117 project tutorials are provided, which contain detailed wiring diagrams, components knowledge, and
fascinating project code. Each project is produced using Thonny for Windows, Arduino IDE for Windows, and Arduino
IDE for Raspberry Pi. It’s easy to get started.

You can create numerous fascinating DIY experiments with one controller(ESP32), various of sensors/modules and
electronics. These courses can give you a deeper understanding of programming methods, logic, electronic circuits
and the Linux operating system (Raspberry Pi).

1

keyestudio WiKi

2 Chapter 1. 1.Introduction

CHAPTER

TWO

2.KIT LIST

When you received the kit , the first thing you see is a beautiful packaged box. Each accessory was safely and orderly
packed in a small bag. Let’s check them first:

3

keyestudio WiKi

ESP32
Main-
board*1

Blue LED*10 Red
LED*10

Yellow LED*10 Green
LED*10

RGB*1 220Resistor*10 10KRe-
sistor*10

1KResistor*10 10K Po-
tentiome-
ter*1

Active
Buzzer*1

Passive Buzzer*1 Button*4 Tilt Switch*1 Photore-
sistor*2

Flame Sen-
sor*1

Yellow Cap*4 IC
74HC595N
*1

1-Digit Tube Display*1 4-Digit
Tube Dis-
play*1

8*8 Dot
Matrix
Display *1

Temperature and
Humidity Sensor*1

LCD_128X32_DOT
*1

IR Receiver*1 IR Re-
mote
Con-
troller*1

Servo*1 44 Membrane Key-
pad1

130 DC
Motor*1

Stepper Motor Driver Board*1 Stepper
Motor*1

Joystick
Module*1

Sound Sensor*1 PIR Mo-
tion Sen-
sor*1

RFID Module*1 Ultrasonic
Sensor*1

LM35 Tem-
perature
Sensor*1

5V Relay Module*1 10K
Thermis-
tor*1

ABS Key Chain*1 White
Card*1

Bread-
board*1

USB Cable*1 Resis-
tance
Card*1

Jumper Wire*30 M-F
Dupont
Wire40

Battery
Holder*1

Keyestudio bread
board special power
module *1

Fan*1 NPN transistor(S8050)*1 PNP
transis-
tor(S8550)*1

4 Chapter 2. 2.Kit list

CHAPTER

THREE

3.KEYESTUDIO ESP32 MAINBOARD

Introduction
Keyestudio ESP32 Core board is a Mini development board based on the ESP-WROOM-32 module. The board has
brought out most I/O ports to pin headers of 2.54mm pitch. These provide an easy way of connecting peripherals
according to your own needs.

When it comes to developing and debugging with the development board, the both side standard pin headers can make
your operation more simple and handy.

The ESP-WROOM-32 module is the industry’s leading integrated WiFi + Bluetooth solution with less than 10 external
components. It integrates antenna switches, RF balun, power amplifiers, low noise amplifiers, filters as well as power
management modules. At the same time, it also integrates TSMC’s low-power 40nm technology, power performance
and RF performance, making it safe, reliable and easy to expand to a variety of applications.

Specifications
Microcontroller: ESP-WROOM-32Module

USB to Serial Port Chip: CP2102-GMR

Working Voltage: DC 5V

Working Current80mAAverage

Current Supply500mAMinimum

Working Temperature Range : -40°C ~ +85°C

WiFi ModeStation/SoftAP/SoftAP+Station/P2P

WiFi Protocol 802.11 b/g/n/e/i802.11nSpeed up to 150 Mbps

5

keyestudio WiKi

WiFi Frequency Range2.4 GHz ~ 2.5 GHz

Bluetooth Protocol conform to Bluetooth v4.2 BR/EDR and BLE Standard

Dimensions55*26*13mm

Weight9.3g

Pin out

ESP32 has fewer pins than commonly used processors, but it doesn’t have any problems reusing multiple functions on
pins.

Warning: The pin voltage level of the ESP32 is 3.3V. If you want to connect the ESP32 to another device with an
operating voltage of 5V, you should use a level converter to convert the voltage level.

Power Pins: The module has two power pins +5V and 3.3V. You can use these two pins to power other devices and
modules.

6 Chapter 3. 3.Keyestudio ESP32 Mainboard

keyestudio WiKi

** GND Pins**The module has three grounded pins.
Enable pin (EN) : This pin is used to enable and disable modules. The pin enables module at high level and disables
module at low level.

Input/Output pins (GPIO) : You can use 32 GPIO pins to communicate with LEDs, switches and other input/output
devices. You can also pull these pins up or down internally.

Note: Though GPIO6 to GPIO11 pins (SCK/CLK, SDO/SD0, SDI/SD1, SHD/SD2, SWP/SD3 and SCS/CMD pins)
are used for SPI communication for the internal module, which are not recommended.
ADC: You can use the 16 ADC pins on this module to convert analog voltages (the output of some sensors) into digital
voltages. Some of these converters are connected to internal amplifiers and which are capable of measuring small
voltages with high accuracy.

DAC: ESP32 module has two A/D converters with 8-bit precision.
Touch pad: There are 10 pins on the ESP32 module that are sensitive to capacitance changes. You can attach these
pins to certain PCB’s pads and use them as touch switches.
SPI: There are two SPI interfaces on the module, which can be used to connect the display screen, SD/microSD memory
card module as well as external flash memory, etc.
I2C: SDA and SCL pins are used for I2C communication.
Serial Communication (UART) : There are two UART serial interfaces on this module, which can be used to transfer
up to 5Mbps of information between two devices . The UART0 also has CTS and RTS control functions.

PWM: Almost all ESP32 input/output pins can be used for PWM(pulse-width modulation). Using these pins can
control the motor, LED lights and color changes for some other sensorsfor example: color sensor, etc.

7

keyestudio WiKi

Components

8 Chapter 3. 3.Keyestudio ESP32 Mainboard

CHAPTER

FOUR

GETTING STARTED WITH ARDUINO

4.1 Windows System

4.1.1 1.1.Download and install Arduino software

1First, enter arduino’s official website:https://www.arduino.cc/, and click “SOFTWARE”to enter the download page.
As shown in the figure below

9

https://www.arduino.cc/

keyestudio WiKi

2Then, select and download the corresponding installer for your operating system. If you are a Windows user, please
select “Windows Installer” to download to install the driver correctly.

10 Chapter 4. Getting started with Arduino

keyestudio WiKi

Choose to click the Windows Win7 and newer to download Arduino 1.8.16 version installer, which requires manual
installation. But when click the Windows ZIP File, the Arduino 1.8.16 zip file will be downloaded directly, just unzip
it to complete the installation.

In general, you can click JUST DOWNLOAD to download it, although if you like, you can choose a small sponsorship
to help the great Arduino open source cause.

3After the Arduino IDE is downloaded, continue the installation. When you receive the warning from the operating
system, please allow the driver installation by clicking I Agree first, and then click Next after selecting the components
to install.

4.1. Windows System 11

keyestudio WiKi

4Select the installation directory (we recommend keeping the default directory), and then click Install.

12 Chapter 4. Getting started with Arduino

keyestudio WiKi

5Select Install if the following screen appears.

This process extracts and installs all the necessary files to properly execute the Arduino software (IDE).

4.1. Windows System 13

keyestudio WiKi

After installation is complete, an Arduino Software shortcut will be generated in the desktop.

4.1.2 1.2.Install a driver on Windows

NoteIf you have installed the driver, just skip it

Before using the ESP32 board, you must install a driver, otherwise it will not communicate with computer. Unlike the
USB series chip(ATMEGA8U2) of the Arduino UNO R3, the ESP32 board is used the CP2102 chip USB series chip
and USB type C interface.

The driver of the CP2102 chip is included in 1.8.0 version and newer version of Arduino IDE. Usually, you connect the
board to the computer and wait for Windows to begin its driver installation process. After a few moments, the process
will succeed.

Note:
1. Please make sure that your IDE is updated to 1.8.0 or newer version

14 Chapter 4. Getting started with Arduino

keyestudio WiKi

2. If the version of Arduino IDE you download is below 1.8, you should download the driver of CP2102 and install it
manually.

Link to download the driver of CP2102:Download CP2102 Driver

If the driver installation process fail, you need to install the driver manually. Open device Manager for your computer
and right-click “the computer”→click“Properties”→Click“Device Manager”. Look under Ports (COM & LPT) or
other device, a yellow exclamation mark means that the CP2102 driver installation failed.

It shows that the driver for CP2102 was not installed sucessfully with a yellow mark. Double-

click , and then click “Update drive. . .” to update the driver.

4.1. Windows System 15

keyestudio WiKi

Click “Browse my computer for drivers”and find the Arduino software we installed or downloaded.

16 Chapter 4. Getting started with Arduino

keyestudio WiKi

There is a drivers folder in Arduino software installed package), open driver folder and you can see the
driver of CP210X series chips.

Click“Browse. . .”, then find the drivers folder, or you could enter“driver”to search in rectangular box, then click“Next”.

4.1. Windows System 17

keyestudio WiKi

After a while, the driver is installed successfully.

18 Chapter 4. Getting started with Arduino

keyestudio WiKi

Open the computer device Manager again, you can see that the CP2102 driver has been successfully installed, and find
the yellow exclamation mark disappear.

4.1. Windows System 19

keyestudio WiKi

4.1.3 1.3. Install the ESP32 on Arduino IDE

The installation process for ESP32 is almost the same as that for ESP8266. To install ESP32 on an Arduino IDE, follow
these steps Noteyou need to download Arduino IDE 1.8.5 or advanced version to install the ESP32.

(1) Click the icon to open the Arduino IDE.

20 Chapter 4. Getting started with Arduino

keyestudio WiKi

2Click“File” →**“Preferences”**copy the website addresshttps://dl.espressif.com/dl/package_esp32_index.json in
the “Additional Boards Manager URLs:”and then click“OK” to save the address.

4.1. Windows System 21

https://dl.espressif.com/dl/package_esp32_index.json

keyestudio WiKi

22 Chapter 4. Getting started with Arduino

keyestudio WiKi

3First click “Tools”→“Board:”and click“Boards Manager. . .”to enter“Boards Manager”, enter “ESP32” in the box
after“ALL”, then select the latest version to Install, the installation package is not large, click “Install” to Install the
plug-in, as shown in the figure below.

4.1. Windows System 23

keyestudio WiKi

After successful installation, click “Close” to Close the page

4.1.4 1.4. Arduino IDE Setting:

1Click the icon to open the Arduino IDE.

24 Chapter 4. Getting started with Arduino

keyestudio WiKi

2When downloading the code to the board, you must select the correct name of Arduino board that matches the board
connected to your computer,click“Tools”→“Board:”. As shown below ;

(Note: we use the ESP32 board in this tutorial; therefore, we select ESP32 Arduino**)**

4.1. Windows System 25

keyestudio WiKi

26 Chapter 4. Getting started with Arduino

keyestudio WiKi

Set the board type as follows:

4.1. Windows System 27

keyestudio WiKi

Then select the correct COM port (the corresponding COM port can be seen after the driver is installed successfully).

28 Chapter 4. Getting started with Arduino

keyestudio WiKi

4.1. Windows System 29

keyestudio WiKi

Before a code was uploaded to the ESP32 mainboard, we have to demonstrate the functionality of each symbol that
appeared in the Arduino IDE toolbar.

30 Chapter 4. Getting started with Arduino

keyestudio WiKi

A- Used to verify whether there is any compiling mistakes or not.

B- Used to upload the sketch to your Arduino board.

C- Used to create shortcut window of a new sketch.

D- Used to directly open an example sketch.

E- Used to save the sketch.

F- Used to send the serial data received from board to the serial monitor.

4.1. Windows System 31

keyestudio WiKi

4.2 Mac System:

4.2.1 2.1.Download and install the Arduino IDE:

32 Chapter 4. Getting started with Arduino

keyestudio WiKi

4.2.2 2.2.How to install the CP2102 driver

NoteIf you have installed the driver, just skip it

1Connect the ESP32 mainboard to your MacOS computer using a USB cable and open Arduino IDE.

Click “**Tools”**→”Board: ESP32 Dev Module ”and “/dev/cu.usbserial-0001”.

4.2. Mac System: 33

keyestudio WiKi

Click to upload code.

Note: If code is uploaded unsuccessfully, you need to install driver of CP2102, please continue to follow the instructions
as below:

2Download the driver of CP2102Download CP2102 Driver

3Click to download the MacOS version, as shown below.

4Unzip the downloaded package.

34 Chapter 4. Getting started with Arduino

keyestudio WiKi

5Open folder and double-click“SiLabsUSBDriverDisk.dmg” file.

You will view the following files as follows:

6Double-click**“Install CP210x VCP Driver”,** check“Don’t warn me when opening application on this disk im-
age”and click“Open”.

4.2. Mac System: 35

keyestudio WiKi

7Click“Continue”.

8Click “Agree” and then click “Continue”.

9Click “Continue” and enter your user password.

36 Chapter 4. Getting started with Arduino

keyestudio WiKi

10. Select “Open Security Preferences”.

4.2. Mac System: 37

keyestudio WiKi

11Click the lock to unlock security & privacy preference, enter your user password to authorize, and then click“unlock”.

12See the lock has been opened, click“Allow”.

13Back to installation page, and wait to install.

38 Chapter 4. Getting started with Arduino

keyestudio WiKi

14Successfully installed.

15Open arduinoIDEclick“Tools”, select Board“ESP32 Dev Module” and port“/dev/cu.usbserial-0001”.

16Click to upload code and show Done uploading”.

4.2. Mac System: 39

keyestudio WiKi

40 Chapter 4. Getting started with Arduino

CHAPTER

FIVE

ARDUINO PROJECT

Click on the link to enter the Arduino IDE tutorial: Arduino IDE Tutorial

5.1 Download code files and Libraries files

Click on the link to download the code file: Download Arduino C Codes file

Click on the link to download the Libraries file: Download Libraries file

5.2 Project 01: Hello World

1. Introduction

For ESP32 beginners, we’ll start with some simple things. In this project, you just need an ESP32 mainboard, USB
cable and computer to complete“Hello World!”Project. It is not only a communication test for ESP32 mainboard and
computer, but also a primary project for ESP32.

2. Components

ESP32*1 USB cable*1

3. Wiring

In this project, we use a USB cable to connect the ESP32 to the computer.

4. Project code

41

keyestudio WiKi

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder(path :) “Arduino-Codes\Project 01 Hel-
loWorld\Project_01_Hello_World”.

//***
/*
* Filename : Hello World
* Description : Enter the letter R,and the serial port displays"Hello World".
* Auther :http//www.keyestudio.com
*/
char val;// defines variable "val"
void setup()
{
Serial.begin(115200);// sets baudrate to 115200
}
void loop()
{
if (Serial.available() > 0) {
val=Serial.read();// reads symbols assigns to "val"
if(val=='R')// checks input for the letter "R"
{ // if so,
Serial.println("Hello World!");// shows “Hello World !”.

}
}

}
//***

Before uploading the project code to ESP32click“Tools”→“Board” and select“ESP32 Wrover Module”.

42 Chapter 5. Arduino Project

keyestudio WiKi

Select the serial port.

5.2. Project 01: Hello World 43

keyestudio WiKi

Note: For macOS users, if the uploading fails, please set the baud rate to 115200 before clicking .

44 Chapter 5. Arduino Project

keyestudio WiKi

Click to download the code to ESP32.

5.2. Project 01: Hello World 45

keyestudio WiKi

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

46 Chapter 5. Arduino Project

keyestudio WiKi

The Project code is uploaded successfully

5. Project result

After the project code is uploaded successfully, power up with a USB cable and click the icon to enter the serial
monitor.

Set baud rate to 115200 and type “R” in the text box. Click “Send”, and the serial monitor will display “Hello World!”.

5.2. Project 01: Hello World 47

keyestudio WiKi

5.3 Project 02: Turn On LED

1. Introduction

In this project, we will show you how to light up the LED. We use the ESP32’s digital pin to turn on the LED so that
the LED is lit up.

2. Components

ESP32*1 Breadboard*1 Jumper
Wire*2

USB Cable*1

Red LED*1 220 Resistor*1

3. Component knowledge

1LED:

48 Chapter 5. Arduino Project

keyestudio WiKi

The LED is a semiconductor known as “light-emitting diode” , which is an electronic device made from semiconducting
materials(silicon, selenium, germanium, etc.). It has an anode and a cathode, the short lead is cathode, which connects
to GND; the long lead is anode, which connects to 3.3V or 5V.

2Five-color ring resistor
A resistor is an electronic component in a circuit that restricts or regulates the flow current flow. On the left is the
appearance of the resistor and on the right is the symbol for the resistance in the circuit . Its unit is(). 1 m= 1000 k1k=
1000.

We can use resistors to protect sensitive components, such as LED. The strength of the resistance is marked on the
body of the resistor with an electronic color code. Each color code represents a number, and you can refer to it in a
resistance card.

-Color 1 – 1st Digit.

-Color 2 – 2nd Digit.

-Color 3 – 3rd Digit.

-Color 4 – Multiplier.

-Color 5 – Tolerance.

5.3. Project 02: Turn On LED 49

keyestudio WiKi

In this kit, we provide three Five-color ring resistor with different resistance values. Take three Five-color ring resistor
as an example.

220 Resistor*10

10K Resistor*10

50 Chapter 5. Arduino Project

keyestudio WiKi

1K Resistor*10

In the same voltage, there will be less current and more resistance. The connection between current(I), voltage(V), and
resistance® can be expressed by the formula: I=U/R. In the figure below, if the voltage is 3V, the current through R1
is: I = U / R = 3 V / 10 K= 0.0003A= 0.3mA.

Don’t connect a low resistance directly to the two poles of the power supply. as this will cause excessive current to

5.3. Project 02: Turn On LED 51

keyestudio WiKi

damage the electronic components. Resistors do not have positive and negative poles.

3Bread board
Breadboards are used to build and test circuits quickly before completing any circuit design. There are many holes in the
breadboard that can be inserted into circuit components such as integrated circuits and resistors. A typical breadboard
is shown below

media/612c1381811b2d780d5f6ed6a7ec3701.png

The breadboard has strips of metal , which run underneath the board and connect the holes on the top of the board. The
metal strips are laid out as shown below. Note that the top and bottom rows of holes are connected horizontally, while
the remaining holes are connected vertically.

media/b45e70b961537035c85878b73d371725.png

The first two rows (top) and the last two rows (bottom) of the breadboard are used for the positive pole (+) and negative
pole (-) of the power supply respectively. The conductive layout of the breadboard is shown in the figure below:

media/d5478bd5eac558252cbc235479d979eb.png

When we connect DIP (Dual In-line Packages) components, such as integrated circuits, microcontrollers, chips and so
on, we can see that a groove in the middle isolates the middle part, so the top and bottom of the groove is not connected.
DIP components can be connected as shown in the following diagram:

media/50caf14e911c4244779e99445c658db6.png

media/9b66ae2199e77fbc99b7b278dac0b567.png

[Power](javascript:;) [Supply](javascript:;)

The ESP32 needs 3.3V-5V power supply. In this project, we connected the ESP32 to the computer by using a USB
cable.

52 Chapter 5. Arduino Project

keyestudio WiKi

4. Wiring diagram

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correct, connect the ESP32 to your computer by using a USB cable.

Note: Avoid any possible short circuits (especially connecting 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause perma-
nent damage to your hardware!

media/0735997593c8858ad6441d8e9867206f.png

Note:

How to connect a LED

How to identify the 220 Five-color ring resistor

5.3. Project 02: Turn On LED 53

keyestudio WiKi

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder(path:)“Arduino-Codes\Project 02Turn On
LED\Project_02_Turn_On_LED”.

//**
/*
* Filename : Turn On LED
* Description : Make an led on.
* Auther : http//www.keyestudio.com
*/
##define LED_BUILTIN 15

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED_BUILTIN as an output.
pinMode(LED_BUILTIN, OUTPUT);

}
void loop() {
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

}
//***

Before uploading the project code to ESP32click“Tools”→“Board” and select“ESP32 Wrover Module”.

54 Chapter 5. Arduino Project

keyestudio WiKi

Select the serial port.

5.3. Project 02: Turn On LED 55

keyestudio WiKi

Note: For macOS users, if the uploading fails, please set the baud rate to 115200 before clicking .

56 Chapter 5. Arduino Project

keyestudio WiKi

Click to download the code to ESP32.

5.3. Project 02: Turn On LED 57

keyestudio WiKi

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

58 Chapter 5. Arduino Project

keyestudio WiKi

The Project code is uploaded successfully

6. Project result

After the project code was uploaded successfully, power up with a USB cable and the LED is lit up.

5.3. Project 02: Turn On LED 59

keyestudio WiKi

5.4 Project 03LED Flashing

1. Introduction

In this project, we will show you the LED flashing effect. We use the ESP32’s digital pin to turn on the LED and make
it flashing.

2. Components

ESP32*1 Breadboard*1

Red LED*1 220 Resistor*1 Jumper
Wire*2

USB Cable*1

3. Wiring diagram

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correct, connect the ESP32 to your computer using a USB cable.

Note: Avoid any possible short circuits (especially connecting 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause perma-
nent damage to your hardware!

media/0735997593c8858ad6441d8e9867206f.png

Note:
How to connect a LED

60 Chapter 5. Arduino Project

keyestudio WiKi

How to identify the 220 Five-color ring resistor

4. Project code
You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 03LED Flash-
ing\Project_03_LED_Flashing”.

//**
/*
* Filename : External LED flashing
* Description : Make an led blinking.
* Auther : http//www.keyestudio.com
*/
##define PIN_LED 15 //define the led pin

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED as an output.
pinMode(PIN_LED, OUTPUT);

}

// the loop function runs over and over again forever
(continues on next page)

5.4. Project 03LED Flashing 61

keyestudio WiKi

(continued from previous page)

void loop() {
digitalWrite(PIN_LED, HIGH); // turn the LED on (HIGH is the voltage level)
delay(500); // wait for 0.5s
digitalWrite(PIN_LED, LOW); // turn the LED off by making the voltage LOW
delay(500); // wait for 0.5s

}
//***

Before uploading Project Code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port as shown below:

Click to download the project code to ESP32.

62 Chapter 5. Arduino Project

keyestudio WiKi

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

The Project code is uploaded successfully

5.4. Project 03LED Flashing 63

keyestudio WiKi

5. Project result

After the project code was uploaded successfully, power up with a USB cable and the LED start flashing.

64 Chapter 5. Arduino Project

keyestudio WiKi

5.5 Project 04: Breathing Led

1. Introduction

In previous studies, we know that LEDs have on/off state, so how to enter the intermediate state? How to output an
intermediate state to make the LED half bright? That’s what we’re going to learn.

Breathing light, that is, LED is turned from off to on gradually, and gradually from on to off, just like “breathing”. So,
how to control the brightness of a LED? We will use ESP32’s PWM to achieve this target.

2. Components

ESP32*1 Breadboard*1

Red LED*1 220 Resistor*1 Jumper
Wire*2

USB Cable*1

3. Component knowledge

5.5. Project 04: Breathing Led 65

keyestudio WiKi

Analog & Digital
An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete time signal
is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A familiar example of
an Analog Signal would be how the temperature throughout the day is continuously changing and could not suddenly
change instantaneously from 0℃ to 10℃. However, Digital Signals can instantaneously change in value. This change
is expressed in numbers as 1 and 0 (the basis of binary code). Their differences can more easily be seen when compared
when graphed as below.

In practical application, we often use binary as the digital signal, that is a series of 0’s and 1’s. Since a binary signal
only has two values (0 or 1), it has great stability and reliability. Lastly, both analog and digital signals can be converted
into the other.

PWM
PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits. Common
processors cannot directly output analog signals. PWM technology makes it very convenient to achieve this conversion
(translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high levels and
low levels, which alternately last for a while. The total time for each set of high levels and low levels is generally fixed,
which is called the period (Note: the reciprocal of the period is frequency). The time of high level outputs are generally
called “pulse width”, and the duty cycle is the percentage of the ratio of pulse duration, or pulse width (PW) to the total
period(T) of the waveform.

The longer the output of high levels last, the longer the duty cycle and the higher the corresponding voltage in the
analog signal will be. The following figures show how the analog signal voltages vary between 0V-3V3 (high level is
3V3) corresponding to the pulse width 0%-100%:

66 Chapter 5. Arduino Project

keyestudio WiKi

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this relationship, we
can use PWM to control the brightness of an LED or the speed of DC motor and so on. It is evident from the above
that PWM is not real analog, and the effective value of the voltage is equivalent to the corresponding analog. So, we
can control the output power of the LED and other output modules to achieve different effects.

ESP32 and PWM:
On ESP32, the LEDC(PWM) controller has 16 separate channels, each of which can independently control frequency,
duty cycle, and even accuracy. Unlike traditional PWM pins, the PWM output pins of ESP32 are configurable, with
one or more PWM output pins per channel. The relationship between the maximum

frequency and bit precision is shown in the following formula, where the maximum value of bit is 31.

For example, generate a PWM with an 8-bit precision (28=256. Values range from 0 to 255) with a maximum frequency
of 80,000,000/255 =312,500Hz.

4. Wiring diagram

5.5. Project 04: Breathing Led 67

keyestudio WiKi

media/0735997593c8858ad6441d8e9867206f.png

Note:
How to connect a LED

How to identify the 220 Five-color ring resistor

5. Project code

The design of this project makes the GP15 output PWM, and the pulse width gradually increases from 0% to 100%,
and then gradually decreases from 100% to 0%.

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 04Breathing
Led\Project_04_Breathing_Led”.

//**
/*
* Filename : Breathing Led

(continues on next page)

68 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

* Description : Make led light fade in and out, just like breathing.
* Auther : http//www.keyestudio.com
*/
##define PIN_LED 15 //define the led pin
##define CHN 0 //define the pwm channel
##define FRQ 1000 //define the pwm frequency
##define PWM_BIT 8 //define the pwm precision
void setup() {
ledcSetup(CHN, FRQ, PWM_BIT); //setup pwm channel
ledcAttachPin(PIN_LED, CHN); //attach the led pin to pwm channel

}

void loop() {
for (int i = 0; i < 255; i++) { //make light fade in

ledcWrite(CHN, i);
delay(10);

}
for (int i = 255; i > -1; i--) { //make light fade out
ledcWrite(CHN, i);
delay(10);

}
}
//***

Before uploading Project Code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port as shown below:

5.5. Project 04: Breathing Led 69

keyestudio WiKi

Click to download the project code to ESP32.

70 Chapter 5. Arduino Project

keyestudio WiKi

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

The Project code is uploaded successfully!

5.5. Project 04: Breathing Led 71

keyestudio WiKi

6. Project result

After the project code was uploaded successfully, power up with a USB cable and the LED is turned from ON to OFF
and then back from OFF to ON gradually like breathing.

72 Chapter 5. Arduino Project

keyestudio WiKi

5.6 Project 05Traffic Lights

1. Introduction

Traffic lights are closely related to people’s daily lives, which generally show red, yellow, and green. Everyone should
obey the traffic rules, which can avoid many traffic accidents. In this project, we will use ESP32 and some LEDs (red,
green and yellow) to simulate the traffic lights.

2. Components

ESP32*1 Bread board*1 Red LED*1 Yellow LED*1

GreenLED*1 USB Cable*1 220 Resistor*3 Jumper Wires

3. Wiring diagram

Note:
How to connect a LED

How to identify the 220 Five-color ring resistor

5.6. Project 05Traffic Lights 73

keyestudio WiKi

4. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 05Traffic
Lights\Project_05_Traffic_Lights”.

//**
/*
* Filename : Traffic Lights
* Description : Simulated traffic lights.
* Auther : http//www.keyestudio.com
*/
##define PIN_LED_RED 0 //define the red led pin
##define PIN_LED_YELLOW 2 //define the yellow led pin
##define PIN_LED_GREEN 15 //define the green led pin

void setup() {
pinMode(PIN_LED_RED, OUTPUT);
pinMode(PIN_LED_YELLOW, OUTPUT);
pinMode(PIN_LED_GREEN, OUTPUT);

}

void loop() {
digitalWrite(PIN_LED_RED, HIGH);// turns on the red led
delay(5000);// delays 5 seconds
digitalWrite(PIN_LED_GREEN, LOW); // turns off the green led
for(int i=0;i<3;i++)// flashes 3 times.

{
delay(500);// delays 0.5 second
digitalWrite(PIN_LED_YELLOW, HIGH);// turns on the yellow led
delay(500);// delays 0.5 second
digitalWrite(PIN_LED_YELLOW, LOW);// turns off the yellow led

}
delay(500);// delays 0.5 second
digitalWrite(PIN_LED_GREEN, HIGH);// turns on the green led
delay(5000);// delays 5 second

(continues on next page)

74 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

digitalWrite(PIN_LED_RED, LOW);// turns off the red led
}
//***

Before uploading Project Code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port as shown below:

Click to download the project code to ESP32.

5.6. Project 05Traffic Lights 75

keyestudio WiKi

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

The Project code is uploaded successfully

76 Chapter 5. Arduino Project

keyestudio WiKi

5. Project result

After the project code was uploaded successfully, power up with a USB cable and you’ll see are below:

First, the green light will be on for five seconds and then off;

Next, the yellow light blinks three times and then goes off;

Then, the red light goes on for five seconds and then goes off;

Repeat steps 1 to 3 above.

5.7 Project 06: RGB LED

1. Introduction

media/94bdff69e438989d8e0934e57f2e5c00.png

5.7. Project 06: RGB LED 77

keyestudio WiKi

RGB is composed of three colors (red, green and blue),which can emit different colors of light by mixing these three
basic colors.

In this project, we will introduce the RGB and show you how to use ESP32 to control the RGB to emit different color
light .RGB is pretty basic, but it’s also a great way to learn the fundamentals of electronics and coding.

2. Components

ESP32*1 Breadboard*1

RGB LED*1 220 Resistor*3 Jumper
Wires

USB Cable*1

3. Component knowledge

Most monitors adopt the RGB color standard, and all colors on a computer screen are a mixture of red, green and blue
in varying proportions.

This RGB LED has 4 pins, each color (red, green, blue) and a common cathode,To change its brightness, we can use
the PWM of the ESP32 pins, which can give different duty cycle signals to the RGB to produce different colors of light.

If we use three 10-bit PWM to control the RGB, in theory, we can create 2 10*210*210 =1,073,741,824(1billion) colors
through different combinations.

4. Wiring diagram

78 Chapter 5. Arduino Project

keyestudio WiKi

media/f3deb3502985ac8d66e99e4f27b3de1e.png

Note:
How to connect a LED

How to identify the 220 Five-color ring resistor

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 06RGB LED\Project_06_RGB_LED”.

//**
/*
* Filename : RGB LED
* Description : Use RGBLED to show random color.
* Auther : http//www.keyestudio.com
*/
int ledPins[] = {0, 2, 15}; //define red, green, blue led pins

(continues on next page)

5.7. Project 06: RGB LED 79

keyestudio WiKi

(continued from previous page)

const byte chns[] = {0, 1, 2}; //define the pwm channels
int red, green, blue;
void setup() {
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

void loop() {
red = random(0, 256);
green = random(0, 256);
blue = random(0, 256);
setColor(red, green, blue);
delay(200);

}

void setColor(byte r, byte g, byte b) {
ledcWrite(chns[0], 255 - r); //Common anode LED, low level to turn on the led.
ledcWrite(chns[1], 255 - g);
ledcWrite(chns[2], 255 - b);

}
//***

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the RGB LED starts to display random colors.

5.8 Project 07: Flowing Water Light

1. Introduction

In our daily life, we can see many billboards composed of different colors of LED. They constantly change the light
(like water) to attract customers’ attention. In this project, we will use ESP32 to control 10 leds to achieve the effect of
flowing water.

2. Components

80 Chapter 5. Arduino Project

keyestudio WiKi

ESP32*1 Breadboard*1

Red LED*1 220 Resistor*1 Jumper
Wires

USB Cable*1

3. Wiring diagram:

Note:
How to connect a LED

How to identify the 220 Five-color ring resistor

5.8. Project 07: Flowing Water Light 81

keyestudio WiKi

4. Project code

This project is designed to make a flowing water lamp. Which are these actions: First turn LED #1 ON, then turn it
OFF. Then turn LED #2 ON, and then turn it OFF. . . and repeat the same to all 10 LEDs until the last LED is turns
OFF. This process is repeated to achieve the“movements”of flowing water.

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 07Flowing Water
Light\Project_07_Flowing_Water_Light”.

//**
/*
* Filename : Flowing Water Light
* Description : Using ten leds to demonstrate flowing lamp.
* Auther : http//www.keyestudio.com
*/
byte ledPins[] = {22, 21, 19, 18, 17, 16, 4, 0, 2, 15};
int ledCounts;

void setup() {
ledCounts = sizeof(ledPins);
for (int i = 0; i < ledCounts; i++) {
pinMode(ledPins[i], OUTPUT);

}
}

void loop() {
for (int i = 0; i < ledCounts; i++) {
digitalWrite(ledPins[i], HIGH);
delay(100);
digitalWrite(ledPins[i], LOW);

}
for (int i = ledCounts - 1; i > -1; i--) {
digitalWrite(ledPins[i], HIGH);
delay(100);
digitalWrite(ledPins[i], LOW);

}
(continues on next page)

82 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

}
//**

5. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that 10 LEDs will light up from left to right and then back from right to left.

5.9 Project 081-Digit Digital Tube

1. Introduction

A 1-Digit 7-Segment Display is an electronic display device that displays decimal numbers. It is widely used in digital
clocks, electronic meters, basic calculators and other electronic devices that display digital information. Eventhough
they may not look modern enough, they are an alternative to more complex dot matrix displays and are easy to use in
limited light conditions and strong sunlight. In this project, we will use ESP32 to control 1-Digit 7-segment display
displays numbers.

2. Components

ESP32*1 Breadboard*1

1-Digit 7-Segment Display*1 220 Resistor*8 Jumper
Wires

USB Cable*1

3. Component knowledge

5.9. Project 081-Digit Digital Tube 83

keyestudio WiKi

media/e44a0f27beec739ee13e68c04865989f.png

1-Digit 7-Segment Display principle: Digital tube display is a semiconductor light emitting device,its basic unit is
a light-emitting diode (LED). Thedigital tube display can be divided into 7-segment display and 8-segment display
according to the number of segments. The 8-segment display has one more LED unit than the 7-segment display (used
for decimal point display). Each segment of the 7-segment display is a separate LED. According to the connection
mode of the LED unit, the digital tube can be divided into a common anode digital tube and a common cathode digital
tube.

In the common cathode 7-segment display, all the cathodes (or negative electrodes) of the segmented LEDs are con-
nected together, so you should connect the common cathode to GND. To light up a segmented LED, you can set its
associated pin to“HIGH”.

In the common anode 7-segment display, the LED anodes (positive electrodes) of all segments are connected together,
so you should connect the common anode to“+5V”. To light up a segmented LED, you can set its associated pin
to“LOW”.

media/28fd057848fbe0e8c8e3362768e7aa44.png

Each part of the digital tube is composed of an LED. So when you use it, you also need to use a current limiting resistor.
Otherwise, the LED will be damaged. In this experiment, we use an ordinary common cathode one-digit digital tube.
As we mentioned above, you should connect the common cathode to GND. To light up a segmented LED, you can set
its associated pin to“HIGH”.

4. Wiring diagram

Note: The direction of the 7-segment display inserted into the breadboard is consistent with the wiring diagram, with
one more point in the lower right corner.

84 Chapter 5. Arduino Project

keyestudio WiKi

5. Project code

The digital display is divided into 7 segments, and the decimal point display is divided into 1 segment. When certain
numbers are displayed, the corresponding segment will be lit. For example, when the number 1 is displayed, segments
b and c will be turned on.

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 081-Digit Digital
Tube\Project_08_One_Digit_Digital_Tube.

//**
/*
* Filename : 1-Digit Digital Tube
* Description : One Digit Tube displays numbers from 9 to 0.
* Auther : http//www.keyestudio.com
*/
// sets the IO PIN for every segment
int a=16; // digital PIN 16 for segment a
int b=4; // digital PIN 4 for segment b
int c=5; // digital PIN 5 for segment c
int d=18; // digital PIN 18 for segment d
int e=19; // digital PIN 19 for segment e
int f=22; // digital PIN 22 for segment f
int g=23; // digital PIN 23 for segment g

(continues on next page)

5.9. Project 081-Digit Digital Tube 85

keyestudio WiKi

(continued from previous page)

int dp=17; // digital PIN 17 for segment dp
void digital_0(void) // displays number 0
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_1(void) // displays number 1
{
digitalWrite(a,LOW);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,LOW);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_2(void) // displays number 2
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,LOW);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,LOW);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_3(void) // displays number 3
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(f,LOW);
digitalWrite(e,LOW);
digitalWrite(dp,LOW);
digitalWrite(g,HIGH);
}
void digital_4(void) // displays number 4
{
digitalWrite(a,LOW);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);

(continues on next page)

86 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_5(void) // displays number 5
{
digitalWrite(a,HIGH);
digitalWrite(b,LOW);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_6(void) // displays number 6
{
digitalWrite(a,HIGH);
digitalWrite(b,LOW);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_7(void) // displays number 7
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,LOW);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_8(void) // displays number 8
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_9(void) // displays number 9
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);

(continues on next page)

5.9. Project 081-Digit Digital Tube 87

keyestudio WiKi

(continued from previous page)

digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void setup()
{
// initialize digital pin LED as an output.
pinMode(a, OUTPUT);
pinMode(b, OUTPUT);
pinMode(c, OUTPUT);
pinMode(d, OUTPUT);
pinMode(e, OUTPUT);
pinMode(f, OUTPUT);
pinMode(g, OUTPUT);
pinMode(dp, OUTPUT);

}
void loop()
{
while(1)
{
digital_9();// displays number 9
delay(1000); // waits a sencond
digital_8();// displays number 8
delay(1000); // waits a sencond
digital_7();// displays number 7
delay(1000); // waits a sencond
digital_6();// displays number 6
delay(1000); // waits a sencond
digital_5();// displays number 5
delay(1000); // waits a sencond
digital_4();// displays number 4
delay(1000); // waits a sencond
digital_3();// displays number 3
delay(1000); // waits a sencond
digital_2();// displays number 2
delay(1000); // waits a sencond
digital_1();// displays number 1
delay(1000);// waits a sencond
digital_0();// displays number 0
delay(1000);// waits a sencond
}}
//**

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 1-Digit 7-Segment Display will display numbers from 9 to 0.

88 Chapter 5. Arduino Project

keyestudio WiKi

5.10 Project 094-Digit Digital Tube

1. Introduction

A 4-digit 7-segment display is a very practical display device and it is used for devices such as electronic clocks, score
counters and the number of people in the park. Because of the low price, easy to use, more and more projects will use
4 Digit 7-segment display. In this project, we use ESP32 control 4-digit 7-segment display to display four digits.

2. Components

ESP32*1 Breadboard*1

4-digit 7-segment display Module*1 M-F Dupont Wires USB Cable*1

3. Component knowledge

TM1650 4-digit 7-segment display It is a 12-pin 4-digit 7-segment display module with clock dots. The driver chip
is TM1650 which only needs 2 signal lines to enable the microcontroller to control the 4-digit 7-segment display. The
control interface level can be 5V or 3.3V.

Specifications of 4-bit 7-segment display module:
Working voltage: DC 3.3V-5V

Maximum current: 100MA

Maximum power: 0.5W

Schematic diagram of 4-digit 7-segment display module:

4. Wiring diagram

5.10. Project 094-Digit Digital Tube 89

keyestudio WiKi

5.Adding the TM1650 library
If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

This code uses a library named “TM1650”, if you haven’t installed it yet, please do so before learning. The steps to
add third-party libraries are as follows:

How to install the library

Open the Arduino IDEclick “Sketch”→“Include Library”→“Add .ZIP Library. . . ”. In the pop-up window, find the file
named **“2. Windows System\2. C_Tutorial\3. Libraries**TM1650.ZIP” which locates in this directory. Select the
TM1650.ZIP file and then click“Open”.

6. Project code

90 Chapter 5. Arduino Project

keyestudio WiKi

After the TM1650 library is added, You can open the code we provideIf you haven’t downloaded the code file, please
click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 094-Digit Digital
Tube\Project_09_Four_Digit_Digital_Tube”.

//**
/*
* Filename : 4-Digit Digital Tube
* Description : Four Digit Tube displays numbers from 1111 to 9999.
* Auther : http//www.keyestudio.com
*/
##include "TM1650.h"
##define CLK 22 //pins definitions for TM1650 and can be changed to other ports
##define DIO 21
TM1650 DigitalTube(CLK,DIO);

void setup(){
//DigitalTube.setBrightness(); //stes brightness from 0 to 7(default is 2)
//DigitalTube.displayOnOFF(); // 0= off,1= on(default is 1)
for(char b=1;b<5;b++){
DigitalTube.clearBit(b); //which bit to clear

}
DigitalTube.displayDot(1,true); // displays the first number
DigitalTube.displayDot(2,true);
DigitalTube.displayDot(3,true);
DigitalTube.displayDot(4,true);
DigitalTube.displayBit(3,0); //which number to display. bit=1-4, number=0-9

}

void loop(){
for(int num=0; num<10; num++){
DigitalTube.displayBit(1,num);
DigitalTube.displayBit(2,num);
DigitalTube.displayBit(3,num);
DigitalTube.displayBit(4,num);
delay(1000);

}
}
//**

7. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that 4-digit 7-segment display displays four digitsand repeat these actions in an infinite loop.

5.10. Project 094-Digit Digital Tube 91

keyestudio WiKi

5.11 Project 108×8 Dot-matrix Display

1. Introduction

Dot matrix display is an electronic digital display device that can display information on machine, clocks, public trans-
port departure indicators and many other devices. In this project, we will use ESP32 control 8x8 LED dot matrix to
display patterns.

2. Components

ESP32*1 Breadboard*1

88 dot matrix module1 M-F Dupont Wires USB Cable*1

3. Component knowledge

8*8 dot matrix module The 8*8 dot matrix is composed of 64 LEDs, and each LED is placed at the intersection of a
row and a column. When using the single chip microcomputer to drive an 8*8 dot matrix, we need 16 digital ports in
total, which greatly wastes the data of the single chip microcomputer.To this end, we specially designed this module,
using the HT16K33 chip to drive an 8*8 dot matrix, and only need to use the I2C communication port of the MCU to
control the 8*8 dot matrix, which greatly saving the MCU resources.

Specifications of 8*8 dot matrix module
Working voltage: DC 5V

Current: 200MA

Maximum power: 1W

Schematic diagram of 8*8 dot matrix module

92 Chapter 5. Arduino Project

keyestudio WiKi

Some modules have three DIP switches that you can toggle at will. These switches are used to set the I2C communi-
cation address, the setting method is as follows. The module has fixed the communication address. A0, A1 and A2 are
connected to GND, and the address is 0x70.

5.11. Project 108×8 Dot-matrix Display 93

keyestudio WiKi

4. Wiring diagram

5. Adding the HT16K33_Lib_For_ESP32 library

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

This code uses a library named “HT16K33_Lib_For_ESP32”, if you haven’t installed it yet, please do so before
learning.

How to install the library

Open the Arduino IDEclick“Sketch”→“Include Library”→“Add .ZIP Library. . . ”. In the pop-up window, find the file
named**“2. Windows System\2. C_Tutorial\3.Libraries**HT16K33_Lib_For_ESP32.ZIP” which locates in this
directory. Select the HT16K33_Lib_For_ESP32.ZIP file and then click“Open”.

94 Chapter 5. Arduino Project

keyestudio WiKi

6. Project code

After the HT16K33_Lib_For_ESP32 library is added, You can open the code we provideIf you haven’t downloaded
the code file, please click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder**“Arduino-Codes\Project 108×8 Dot-matrix Dis-
play\Project_10_8×8_Dot_Matrix_Display”**.

//**
/*
* Filename : 8×8 Dot-matrix Display
* Description : 8x8 LED dot matrix display“Heart” pattern.
* Auther : http//www.keyestudio.com
*/
##include "HT16K33_Lib_For_ESP32.h"

##define SDA 21
##define SCL 22

ESP32_HT16K33 matrix = ESP32_HT16K33();
(continues on next page)

5.11. Project 108×8 Dot-matrix Display 95

keyestudio WiKi

(continued from previous page)

//The brightness values can be set from 1 to 15, with 1 darkest and 15 brightest
##define A 15

byte result[8][8];
byte test1[8] = {0x00,0x42,0x41,0x09,0x09,0x41,0x42,0x00};

void setup()
{
matrix.init(0x70, SDA, SCL);//Initialize matrix
matrix.showLedMatrix(test1,0,0);
matrix.show();

}

void loop()
{
for (int i = 0; i <= 7; i++)
{
matrix.setBrightness(i);
delay(100);

}
for (int i = 7; i > 0; i--)
{
matrix.setBrightness(i);
delay(100);

}
}
//**

7. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 8*8 dot matrix display“Smiling face”pattern.

5.12 Project 1174HC595N Control 8 LEDs

1. Introduction

In previous projects, we learned how to light up an LED.

With only 32 IO ports on ESP32, how do we light up a lot of leds? Sometimes it is possible to run out of pins on
the ESP32, and you need to extend it with the shift register.You can use the 74HC595N chip to control 8 outputs at a
time, taking up only a few pins on your microcontroller. In addition, you can also connect multiple registers together
to further expand the output. In this project, we will use ESP3274HC595 chip and LED to make a flowing water light
to understand the function of the 74HC595 chip.

2. Components

96 Chapter 5. Arduino Project

keyestudio WiKi

![img](file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml16172\wps58.jpg)
ESP32*1 Breadboard*1 74HC595N

chip*1
Jumper Wires

220Resistor*8 Red LED*8 USB Ca-
ble*1

3. Component knowledge

74HC595N Chip: The 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert
the serial data of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With
this characteristic, the 74HC595 chip can be used to expand the IO ports of an ESP32. At least 3 ports are required to
control the 8 ports of the 74HC595 chip.

5.12. Project 1174HC595N Control 8 LEDs 97

keyestudio WiKi

The ports of the 74HC595 chip are described as follows

4. Wiring diagram

Note: Note the orientation in which the 74HC595N chip is inserted.

5. Project code

98 Chapter 5. Arduino Project

keyestudio WiKi

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 1174HC595N Control 8
LEDs\Project_11_74HC595N_Control_8_LEDs”.

//**
/*
* Filename : 74HC595N Control 8 LEDs
* Description : Use 74HC575N to drive ten leds to display the flowing light.
* Auther : http//www.keyestudio.com
*/
int dataPin = 14; // Pin connected to DS of 74HC595(Pin14)
int latchPin = 12; // Pin connected to ST_CP of 74HC595(Pin12)
int clockPin = 13; // Pin connected to SH_CP of 74HC595(Pin11)

void setup() {
// set pins to output
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);

}

void loop() {
// Define a one-byte variable to use the 8 bits to represent the state of 8 LEDs of␣

→˓LED bar graph.
// This variable is assigned to 0x01, that is binary 00000001, which indicates only␣

→˓one LED light on.
byte x = 0x01; // 0b 0000 0001
for (int j = 0; j < 8; j++) { // Let led light up from right to left

writeTo595(LSBFIRST, x);
x <<= 1; // make the variable move one bit to left once, then the bright LED move␣

→˓one step to the left once.
delay(50);

}
delay(100);
x = 0x80; //0b 1000 0000
for (int j = 0; j < 8; j++) { // Let led light up from left to right

writeTo595(LSBFIRST, x);
x >>= 1;
delay(50);

}
delay(100);

}
void writeTo595(int order, byte _data) {
// Output low level to latchPin
digitalWrite(latchPin, LOW);
// Send serial data to 74HC595
shiftOut(dataPin, clockPin, order, _data);
// Output high level to latchPin, and 74HC595 will update the data to the parallel␣

→˓output port.
digitalWrite(latchPin, HIGH);

}
(continues on next page)

5.12. Project 1174HC595N Control 8 LEDs 99

keyestudio WiKi

(continued from previous page)

//**

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 8 LEDs start flashing in flowing water mode.

5.13 Project 12Active Buzzer

1. Introduction

Active buzzer is a sound component that is widely used as a sound component for computersprintersalarmselectronic
toys and phonestimers etc. It has an internal vibration source, just by connecting to a 5V power supply, it can continu-
ously buzz. In this project, we will use ESP32 to control the active buzzer to beep.

2. Components

ESP32*1 Breadboard*1 Active buzzer*1

NPN transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

3. Component knowledge

media/11ec5ddc982db9928341e858aab94652.png

Active buzzer: Active buzzer inside has a simple oscillator circuit, which can convert constant direct current into a
certain frequency pulse signal. Once active buzzer receives a high level, it will produce sound. Passive buzzer is an
internal without vibration source integrated electronic buzzer, it must be driven by 2k to 5k square wave, rather than
a DC signal. The two buzzers are very similar in appearance, but one buzzer with a green circuit board is a passive
buzzer, while the other buzzer with black tape is an active buzzer. Passive buzzers don’t have positive polarity, but
active buzzers have. As shown below:

100 Chapter 5. Arduino Project

keyestudio WiKi

media/0f9825969867ac2d65bb1a19ed0ad2ab.png

Transistor:

Because the buzzer requires such large current that GPIO of ESP32 output capability cannot meet the requirement, a
transistor of NPN type is needed here to amplify the current.

Transistor, the full name: semiconductor transistor, is a semiconductor device that controls current. Transistorcan be
used to amplify weak signal, or works as a switch. It has three electrodes(PINs): base (b), collector © and emitter (e).
When there is current passing between “be”, “ce” will allow several-fold current (transistor magnification) pass, at this
point, transistor works in the amplifying area. When current between “be” exceeds a certain value, “ce” will not allow
current to increase any longer, at this point, transistor works in the saturation area. Transistor has two types as shown
below: PNP and NPN,

PNP transistor NPN transistor

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

Based on the transistor’s characteristics, it is often used as a switch in digital circuits. As micro-controller’s capacity
to output current is very weak, we will use transistor to amplify current and drive large-current components.

When using NPN transistor to drive buzzer, we often adopt the following method. If GPIO outputs high level, current
will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs low level, no current
flows through R1, the transistor will not be conducted, and buzzer will not sound.

When using PNP transistor to drive buzzer, we often adopt the following method. If GPIO outputs low level, current
will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs high level, no
current flows through R1, the transistor will not be conducted, and buzzer will not sound.

5.13. Project 12Active Buzzer 101

keyestudio WiKi

4. Wiring diagram

Note: The buzzer power supply in this circuit is 5V. On a 3.3V power supply, the buzzer can work, but will reduce the
loudness.

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 12Active
Buzzer\Project_12_Active_Buzzer”.

//**
/*
* Filename : Active Buzzer
* Description : Active buzzer beeps.
* Auther : http//www.keyestudio.com
*/
##define buzzerPin 15 //define buzzer pins

void setup ()
{
pinMode (buzzerPin, OUTPUT);

}
void loop ()
{
digitalWrite (buzzerPin, HIGH);
delay (500);
digitalWrite (buzzerPin, LOW);
delay (500);

(continues on next page)

102 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

}
//**

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the active buzzer beeps.

5.14 Project 13Passive Buzzer

1. Introduction:

In a previous project, we studied an active buzzer, which can only make a sound and may make you feel very
monotonous. In this project, we will learn a passive buzzer and use the ESP32 control it to work. Unlike the active
buzzer, the passive buzzer can emit sounds of different frequencies.

2. Components

ESP32*1 Breadboard*1 Passive Buzzer *1

NPN transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

3. Component knowledge

5.14. Project 13Passive Buzzer 103

keyestudio WiKi

Passive buzzer: A passive buzzer is an integrated electronic buzzer with no internal vibration source and it has to be
driven by 2K-5K square waves, not DC signals. The two buzzers are very similar in appearance, but one buzzer with a
green circuit board is a passive buzzer and the other buzzer with black tape is an active buzzer. Passive buzzers cannot
distinguish between positive polarity while active buzzers can.

Transistor: Please refer to Project 12.

4. Wiring diagram:

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 13Passive

104 Chapter 5. Arduino Project

keyestudio WiKi

Buzzer\Project_13_Passive_Buzzer”.

//**
/*
* Filename : Passive Buzzer
* Description : Passive Buzzer sounds the alarm.
* Auther : http//www.keyestudio.com
*/
##define LEDC_CHANNEL_0 0

// LEDC timer uses 13 bit accuracy

##define LEDC_TIMER_13_BIT 13

// Define tool I/O ports

##define BUZZER_PIN 15

//Create a musical melody list, Super Mario

int melody[] = {330, 330, 330, 262, 330, 392, 196, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392, 440, 349, 392, 330, 262, 294, 247, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392,440, 349, 392, 330, 262, 294, 247, 392, 370, 330, 311, 330, 208, 220,␣
→˓262, 220, 262,

294, 392, 370, 330, 311, 330, 523, 523, 523, 392, 370, 330, 311, 330, 208, 220, 262,220,␣
→˓262, 294, 311, 294, 262, 262, 262, 262, 262, 294, 330, 262, 220, 196, 262, 262,262,␣
→˓262, 294, 330, 262, 262, 262, 262, 294, 330, 262, 220, 196};

//Create a list of tone durations

int noteDurations[] = {8,4,4,8,4,2,2,3,3,3,4,4,8,4,8,8,8,4,8,4,3,8,8,3,3,3,3,4,4,8,4,8,8,
→˓8,4,8,4,3,8,8,2,8,8,8,4,4,8,8,4,8,8,3,8,8,8,4,4,4,8,2,8,8,8,4,4,8,8,4,8,8,3,3,3,1,8,4,
→˓4,8,4,8,4,8,2,8,4,4,8,4,1,8,4,4,8,4,8,4,8,2};
void setup() {
pinMode(BUZZER_PIN, OUTPUT); // Set the buzzer to output mode
}

void loop() {

int noteDuration; //Create a variable of noteDuration

for (int i = 0; i < sizeof(noteDurations); ++i)

{
noteDuration = 800/noteDurations[i];

ledcSetup(LEDC_CHANNEL_0, melody[i]*2, LEDC_TIMER_13_BIT);

ledcAttachPin(BUZZER_PIN, LEDC_CHANNEL_0);

ledcWrite(LEDC_CHANNEL_0, 50);

(continues on next page)

5.14. Project 13Passive Buzzer 105

keyestudio WiKi

(continued from previous page)

delay(noteDuration * 1.30); //delay
}

}
//**

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the passive buzzer plays music.

5.15 Project 14: Mini Table Lamp

1. Introduction

Do you know that the ESP32 can light up an LED when you press a button? In this project, we will use ESP32a button
switch and an LED to make a mini table lamp.

2. Components

ESP32*1 Breadboard*1 Button*1 10K Resistor*1

Red LED*1 220 Resistor*1 USB Cable*1 Jumper Wires Button Cap*1

3.Component knowledge

Button: A button can control the circuit on and off, the button is plugged into a circuit, the circuit is disconnected when
the button is not pressed. The circuit works when you press the button, but breaks again when you release it. Why does
it only work when you press it? It starts from the internal structure of the button, which don’t allow current to travel
from one end of the button to the other before it is pressed; When pressed, a metal strip inside the button connects the
two sides to allow electricity to pass through.

106 Chapter 5. Arduino Project

keyestudio WiKi

The internal structure of the button is shown in the figure . Before the button is pressed, 1 and 2 are
on, 3 and 4 are also on, but 1, 3 or 1, 4 or 2, 3 or 2, 4 are off(not working). Only when the button is pressed, 1, 3 or 1,
4 or 2, 3 or 2, 4 are on.

The button switch is one of the most commonly used components in circuit design.

Schematic diagram of the button:

What is button [shake](javascript:;)?
We think of the switch circuit as “press the button and turn it on immediately”, “press it again and turn it off immedi-
ately”. In fact, this is not the case.

The button usually uses a mechanical elastic switch, and the mechanical elastic switch will produce a series of
[shake](javascript:;) due to the elastic action at the moment when the mechanical contact is opened and closed (usually
about 10ms). As a result, the button switch will not immediately and stably turn on the circuit when it is closed, and it
will not be completely and instantaneously disconnected when it is turned off.

How to eliminate the [shake](javascript:;)?
There are two common methods, namely fix [shake](javascript:;) in the software and hardware. We only discuss the
[shake](javascript:;) removal in the software.

5.15. Project 14: Mini Table Lamp 107

keyestudio WiKi

We already know that the [shake](javascript:;) time generated by elasticity is about 10ms, and the delay command can
be used to delay the execution time of the command to achieve the effect of [shake](javascript:;) removal.

Therefore, we delay 0.02s in the code to achieve the key anti-shake function.

4. Wiring Diagram

media/a5b85f1e1f5714afbe4730b1265e3a15.png

Note:
How to connect the LED

How to identify the 220 5-band resistor and 10K 5-band resistor

108 Chapter 5. Arduino Project

keyestudio WiKi

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 14Mini Table
Lamp\Project_14_Mini_Table_Lamp”.

//**
/*
* Filename : Mini Table Lamp
* Description : Make a table lamp.
* Auther : http//www.keyestudio.com
*/
##define PIN_LED 4
##define PIN_BUTTON 15
bool ledState = false;

void setup() {
// initialize digital pin PIN_LED as an output.
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_BUTTON, INPUT);

}

(continues on next page)

5.15. Project 14: Mini Table Lamp 109

keyestudio WiKi

(continued from previous page)

// the loop function runs over and over again forever
void loop() {
if (digitalRead(PIN_BUTTON) == LOW) {
delay(20);
if (digitalRead(PIN_BUTTON) == LOW) {
reverseGPIO(PIN_LED);

}
while (digitalRead(PIN_BUTTON) == LOW);

}
}

void reverseGPIO(int pin) {
ledState = !ledState;
digitalWrite(pin, ledState);

}
//**

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that press the push button switch, the LED turns on; When it is released, the LED is still on. Press it again,
and the LED turns off. When it is released, the LED stays off. Doesn’t it look like a mini table lamp?

5.16 Project 15Tilt and LED

1. Introduction

The ancients without electronic clock, so the hourglass are invented to measure time. The hourglass has a large capacity
on both sides, and which is filled with fine sand on one side. What’s more, there is a small channel in the middle, which
can make the hourglass stand upright, the side with fine sand is on the top. due to the effect of gravity,the fine sand will
flow down through the channel to the other side of the hourglass. When the sand reaches the bottom, turn it upside down
and record the number of times it has gone through the hourglass, therefore, the next day we can know the approximate
time of the day by it.

In this project, we will use ESP32 to control the tilt switch and LED lights to simulate an hourglass and make an
electronic hourglass.

2. Components

ESP32*1 Tilt Switch*1 Red LED*4 10K Resistor*1

Breadboard*1 220 Resistor*4 USB Cable*1 Jumper Wires

110 Chapter 5. Arduino Project

keyestudio WiKi

3. Component knowledge

Tilt switch is also called digital switch. Inside is a metal ball that can roll. The principle of rolling the metal ball to
contact with the conductive plate at the bottom, which is used to control the on and off of the circuit. When it is a rolling
ball tilt sensing switch with single directional trigger, the tilt sensor is tilted toward the trigger end (two gold-plated pin
ends), the tilt switch is in a closed circuit and the voltage at the analog port is about 5V(binary number is 1023),

In this way, the LED will light up. When the tilting switch is in horizontal position or tilting to the other end, the tilting
switch is in open state the voltage of the analog port is about 0V (binary number is 0), the LED will turn off. In the
program, we judge the state of the switch based on whether the voltage value of the analog port is greater than 2.5V
(binary number is 512).

The internal structure of the tilt switch is used here to illustrate how it works, as shown below:

4. Wiring Diagram

media/a46c0b8be898ba596308ce56993c26ba.png

Note:
How to connect the LED

5.16. Project 15Tilt and LED 111

keyestudio WiKi

How to identify the 220 5-band resistor and 10K 5-band resistor

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 15Tilt And LED\Project_15_Tilt_And_LED”.

112 Chapter 5. Arduino Project

keyestudio WiKi

//**
/*
* Filename : Tilt And LED
* Description : Tilt switches and four leds to simulate an hourglass.
* Auther : http//www.keyestudio.com
*/
##define SWITCH_PIN 15 // the tilt switch is connected to Pin15
byte switch_state = 0;
void setup()
{

for(int i=16;i<20;i++)
{

pinMode(i, OUTPUT);
}
pinMode(SWITCH_PIN, INPUT);

for(int i=16;i<20;i++)
{
digitalWrite(i,0);

}
Serial.begin(9600);

}
void loop()
{
switch_state = digitalRead(SWITCH_PIN);
Serial.println(switch_state);
if (switch_state == 0)
{
for(int i=16;i<20;i++)
{
digitalWrite(i,1);
delay(500);

}
}
if (switch_state == 1)

{
for(int i=19;i>15;i--)
{
digitalWrite(i,0);
delay(500);

}
}

}
//**

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that when you tilt the breadboard to an angle, the LEDs will light up one by one. When you turn the breadboard
to the original angle, the LEDs will turn off one by one. Like the hourglass, the sand will leak out over time.

5.16. Project 15Tilt and LED 113

keyestudio WiKi

5.17 Project 16Burglar Alarm

1. Introduction

The human body infrared sensor measures the thermal infrared (IR) light emitted by moving objects. The sensor can
detect the movement of peopleanimals and cars to trigger safety alarms and lighting. They are used to detect movement
and ideal for security such as burglar alarms and security lighting systems. In this project, we will use the ESP32
control human body infrared sensorbuzzer and LED to simulate burglar alarm.

2. Components

ESP32*1 Human Body Infrared Sen-
sor*1

Active Buzzer*1 Red LED*1

Breadboard*1 M-F Dupont Wires 220Resistor*1 USB Cable*1 Jumper
Wires

3. Component knowledge

Human Body Infrared Sensor : Its principle is that when some crystals, such as lithium tantalate and triglyceride
sulfate are heated, the two ends of the crystal will generate an equal number of charges with opposite signs. These
charges can be converted into voltage output by an amplifier. Due to the human body will release infrared light,
although relatively weak, can still be detected. When the Human Body Infrared Sensor detects the movement of a
nearby person, the sensor signal terminal outputs a high level 1, otherwise, it outputs low level 0.

Special attention should be paid to the fact that this sensor can detect peopleanimals and cars in motion, which cannot
be detected in static, and the maximum detection distance is about 7 meters.

Note: Since vulnerable to radio frequency radiation and temperature changes, the PIR motion sensor should be kept
away from heat sources like radiators, heaters and air conditioners, as well as direct irradiation of sunlight, headlights
and incandescent light.

Features:
Maximum input voltage: DC 3.3 ~ 5V

Maximum operating current: 50MA

Maximum power: 0.3W

Operating temperature: -20 ~ 85℃

114 Chapter 5. Arduino Project

keyestudio WiKi

Output high level is 3V, low level is 0V.

Delay time: about 2.3 to 3 seconds

Detection Angle: about 100 degrees

Maximum detection distance: about 7 meters

Indicator light output (when the output is high, it will light up)

Pin limiting current: 50MA

Schematic diagram:

4. Wiring Diagram

media/67fd78fc542f0e7c232d96a23fb90120.png

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 16Burglar
Alarm\Project_16_Burglar_Alarm”.

//**
/*
* Filename : Burglar Alarm
* Description : Human infrared sensor buzzer and LED to simulate burglar alarm.
* Auther : http//www.keyestudio.com
*/
##define buzzerPin 2 // the pin of the buzzer

(continues on next page)

5.17. Project 16Burglar Alarm 115

keyestudio WiKi

(continued from previous page)

##define ledPin 0 // the pin of the PIR motion sensor
##define pirPin 15 // the pin of the PIR motion sensor
byte pirStat = 0; // the state of the PIR motion sensor
void setup() {
pinMode(buzzerPin, OUTPUT);
pinMode(ledPin, OUTPUT);
pinMode(pirPin, INPUT);
}
void loop()
{
pirStat = digitalRead(pirPin);

if (pirStat == HIGH)
{ // if people or moving animals are detected

digitalWrite(buzzerPin, HIGH); // the buzzer buzzes
digitalWrite(ledPin, HIGH); // the led turn on
delay(500);
digitalWrite(buzzerPin, LOW); // the buzzer doesn't sound
digitalWrite(ledPin, LOW); // the led turn off
delay(500);

}
else {
digitalWrite(buzzerPin, LOW); // if people or moving animals are not detected, turn␣

→˓off buzzers
digitalWrite(ledPin, LOW); // the led turn off

}
}
//***

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that if the human body infrared sensor detects someone moving nearby, the buzzer will continuously issue an
alarm and the LED will continuously flash.

5.18 Project 17 I2C 128×32 LCD

1. Introduction

In everyday life, we can do all kinds of experiments with the display module and also DIY a variety of small objects.
For example, you can make a temperature meter with a temperature sensor and display, or make a distance meter with an
ultrasonic module and display. In this project, we will use the LCD_128X32_DOT module as the display and connect it
to the ESP32, which will be used to control the LCD_128X32_DOT display to display various English words, common
symbols and numbers.

2. Components

116 Chapter 5. Arduino Project

keyestudio WiKi

ESP32*1 Breadboard*1

LCD_128X32_DOT*1 M-F Dupont Wires USB Cable*1

3.Component knowledge

LCD_128X32_DOT: It is an LCD module with 128*32 pixels and its driver chip is ST7567A. The module uses the
IIC communication mode, while the code contains a library of all alphabets and common symbols that can be called
directly. When using, we can also set it in the code so that the English letters and symbols show different text sizes. To
make it easy to set up the pattern display, we also provide a mold capture software that converts a specific pattern into
control code and then copies it directly into the test code for use.

Schematic diagram of LCD_128X32_DOT

5.18. Project 17 I2C 128×32 LCD 117

keyestudio WiKi

Features:
Pixel: 128*32 character

Operating voltage(chip)4.5V to 5.5V

Operating current100mA (5.0V)

Optimal operating voltage(module):5.0V

4. Wiring Diagram

media/072d954dac310add077688398ad59af2.png

5. Adding the lcd128_32_io library

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

This code uses a library named “lcd128_32_io”, if you haven’t installed it yet, please do so before learning. The steps
to add third-party libraries are as follows:

Open the Arduino IDEclick “Sketch”→“Include Library”→“Add .ZIP Library. . . ”. In the pop-up window, find the file
named “2. Windows System\2. C_Tutorial\3. Libraries\LCD_128X32.ZIP” which locates in this directory. Select
the LCD_128X32.ZIP file and then click “Open”.

118 Chapter 5. Arduino Project

keyestudio WiKi

6. Project code

After the lcd128_32_io library was added, You can open the code we provideIf you haven’t downloaded the code file,
please click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 17 I2C 128×32 LCD2. C_Tutorial\2.
Projects\Project_17_I2C_128_32_LCD”.

//**
/*
* Filename : LCD 128*32
* Description : LCD 128*32 display string

(continues on next page)

5.18. Project 17 I2C 128×32 LCD 119

keyestudio WiKi

(continued from previous page)

* Auther : http//www.keyestudio.com
*/
##include "lcd128_32_io.h"

//Create lCD128 *32 pinsda--->21 scl--->22
lcd lcd(21, 22);

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //clear

}

void loop() {
lcd.Cursor(0, 4); //Set display position
lcd.Display("KEYESTUDIO"); //Setting the display
lcd.Cursor(1, 0);
lcd.Display("ABCDEFGHIJKLMNOPQR");
lcd.Cursor(2, 0);
lcd.Display("123456789+-*/<>=$@");
lcd.Cursor(3, 0);
lcd.Display("%^&(){}:;'|?,.~\\[]");

}
//**

7. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you will
see that the 128X32LCD module display will show“KEYESTUDIO”at the first line“ABCDEFGHIJKLMNOPQR”will
be displayed at the second line“123456789±*/<>=$@”will be shown at the third line and“%^&(){}:;’|?,.~\[]”will be
displayed at the fourth line.

5.19 Project 18Small Fan

1. Introduction

In hot summer, we need electric fans to cool us down, so in this project, we will use ESP32 control 130 motor module
and small fan blade to make a small electric fan.

2. Components

120 Chapter 5. Arduino Project

keyestudio WiKi

ESP32*1 Breadboard*1 Battery Holder*1 Fan*1

130 Motor Module*1 Keyestudio bread board special
power module*1

M-F Dupont Wires No.5 battery (self-
provided)*6

USB Cable*1

3. Component knowledge :

130 motor module: The motor control module uses the HR1124S motor control chip. which is a single-channel H-
bridge driver chip for DC motor. The H-bridge driver part of the HR1124S uses low on-resistance PMOS and NMOS
power tubes. The low on-resistance ensure low power loss of the chip and make the chip work safely for longer time In
addition, In addition, the HR1124S has low standby current and low static operating current, which makes the HR1124S
easy to use in toy solutions.

Features:
Working voltage: 5V

Working current: 200MA

Working power: 2W

Working temperature: -10℃~ +50℃

Schematic diagram of 130 motor module

5.19. Project 18Small Fan 121

keyestudio WiKi

Keyestudio Breadboard Power Supply Module

Introduction:
This breadboard power supply module is compatible with 5V and 3.3V, which can be applied to MB102 breadboard.
The module contains two channels of independent control, powered by the USB all the way.

The output voltage is constant for the DC5V, and another way is powered by DC6.5-12V, output controlled by the slide
switch, respectively for DC5V and DC3.3V.

If the other power supply is DC 6.5-12v, when the slide switch is switched to +5V, the output voltages of the left and
right lines of the module are DC 5V. When the slide switch is switched to +3V, the output voltage of the USB power
supply terminal of the module is DC5V , and the output voltage of the DC 6.5-12V power supply terminal of the other
power supply is DC3.3V.

Specification:
• Applied to MB102 breadboard;

• Input voltageDC 6.5-12V or powered by USB;

• Output voltage3.3V or 5V

• Max output current<700ma

• Up and down two channels of independent control, one of which can be switched to 3.3V or 5V;

Comes with two sets of DC output pins, easy for external use.

4. Wiring Diagram

(Note: Connect the wires and then install a small fan blade on the DC motor.)

122 Chapter 5. Arduino Project

keyestudio WiKi

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “2. Windows System****2. C_Tutorial\2. Projects\Project 18Small
Fan\Project_18_ Small_Fan”.

//**
/*
* Filename : Small Fan
* Description : Fan clockwise rotation,stop,counterclockwise rotation,stop,cycle.
* Auther : http//www.keyestudio.com
*/
##define Motorla 15 // the Motor_IN+ pin of the motor
##define Motorlb 2 // the Motor_IN- pin of the motor

void setup(){
pinMode(Motorla, OUTPUT);//set Motorla to OUTPUT
pinMode(Motorlb, OUTPUT);//set Motorlb to OUTPUT

}
void loop(){
//Set to rotate for 5s anticlockwise
digitalWrite(Motorla,HIGH);
digitalWrite(Motorlb,LOW);
delay(5000);

//Set to stop rotating for 2s
digitalWrite(Motorla,LOW);
digitalWrite(Motorlb,LOW);
delay(2000);

//Set to rotate for 5s clockwise
digitalWrite(Motorla,LOW);
digitalWrite(Motorlb,HIGH);
delay(5000);

//Set to stop rotating for 2s
digitalWrite(Motorla,LOW);
digitalWrite(Motorlb,LOW);
delay(2000);

}
//**

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see thatthe small fan turns counterclockwise for 5 seconds and stops for 2 seconds, and then turns clockwise for 5
seconds and stops for 2 seconds, which repeats in an endless loop.

5.19. Project 18Small Fan 123

keyestudio WiKi

5.20 Project 19Servo Sweep

1. Introduction

Servo is an electric motor that can rotate very precisely. At present, it has been widely used in toy cars, remote control
helicoptersairplanesrobots, etc. In this project, we will use ESP32 to control the rotation of the servo.

2. Components

ESP32*1 Breadboard*1 USB Cable*1

Servo*1 Jumper Wires

3. Component knowledge

Servo

The servo is a kind of position servo driver, which is mainly composed of housingcircuit boardcopless motorgear
and position detector. Its working principle is that the receiver or microcontroller sends a signal to the servo which
has an internal reference circuit that generates a reference signal with a period of 20ms and a width of 1.5ms, and
compares the DC bias voltage with the voltage of the potentiometer to output voltage difference.The IC on the circuit
board determines the direction of rotation, and then drives the coreless motor to start rotation and transmits the power
to the swing arm through the reduction gear, while the position detector sends back a signal to determine whether it
has reached the positioning. It is suitable for those control systems that require constant change of angle and can be
maintained.

When the motor rotates at a certain speed, the potentiometer is driven by the cascade reduction gear to rotate so that
the voltage difference is 0 and the motor stops rotating. The angle range of general servo rotation is 0 to 180 degrees.

The pulse period for controlling the servo is 20ms, the pulse width is 0.5ms to 2.5ms, and the corresponding position
is -90 degrees to +90 degrees. The following is an example of a 180 degree servo

124 Chapter 5. Arduino Project

keyestudio WiKi

Servo motors have many specifications, but they all have three connecting wires, which are brown, red, and orange
(different brands may have different colors). The brown is GND, the red is the positive power supply, and the orange is
the signal line.

4. Wiring Diagram

When supplying the servo, please note that the power supply voltage should be 3.3V-5V. Make sure there are no errors
when connecting the servo to the power supply.

media/39621cc861e5f7c189a047b7f0bbd0be.png

5. Adding the ESP32Servo library

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

This code uses a library named “ESP32Servo”, If you haven’t installed it yet, please do so before learning. The steps
to add third-party libraries are as follows:

How to install the library

5.20. Project 19Servo Sweep 125

keyestudio WiKi

There are two ways to add libraries:

The first way, open the Arduino IDE, click“Sketch”→“Include Library”→“Manage Libraries”. Enter “ESP32Servo”
in the search box, select “ESP32Servo” and click “Update” to install. Please refer to the following operations :

126 Chapter 5. Arduino Project

keyestudio WiKi

The second wayopen the Arduino IDEclick “Sketch”→“Include Library”→“Add .ZIP Library. . . ”. In the pop-up win-
dow, find the file named**“2. Windows System\2.C_Tutorial\3.Libraries****ESP32Servo-0.8.0.ZIP**which locates
in this directory. Select the ESP32Servo-0.80.ZIP fileand then click“Open”.

5.20. Project 19Servo Sweep 127

keyestudio WiKi

6. Project code

After the ESP32Servo library is added, You can open the code we provideIf you haven’t downloaded the code file,
please click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder **“2. Windows System****2. C_Tutorial\2. Projects\Project 19Servo
Sweep\Project_19_Servo_Sweep”.

//**
/*
* Filename : Servo Sweep
* Description : Control the servo motor for sweeping
* Auther : http//www.keyestudio.com
*/
##include <ESP32Servo.h>

Servo myservo; // create servo object to control a servo

int posVal = 0; // variable to store the servo position
int servoPin = 15; // Servo motor pin

void setup() {
myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

→˓object
}
void loop() {

for (posVal = 0; posVal <= 180; posVal += 1) { // goes from 0 degrees to 180 degrees
// in steps of 1 degree
myservo.write(posVal); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
for (posVal = 180; posVal >= 0; posVal -= 1) { // goes from 180 degrees to 0 degrees
myservo.write(posVal); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
}

(continues on next page)

128 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

//**

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the Servo will rotate from 0 degrees to 180 degrees and then reverse the direction to make it rotate from
180 degrees to 0 degrees and repeat these actions in an endless loop.

5.21 Project 20Stepping Motor

1. Introduction

Stepper motor is the most important part of industrial robot 3D printer lathes and other mechanical equipment with
accurate positioning. In this project, we will use ESP32 control ULN2003 stepper motor drive board to drive the stepper
motor to rotate.

2. Components

5.21. Project 20Stepping Motor 129

keyestudio WiKi

ESP32*1 Breadboard*1 ULN2003 Stepper Motor Drive
Board*1

Stepper Motor *1 M-F Dupont Wires USB Cable*1

Battery Holder*1 Keyestudio bread board special power mod-
ule*1

No.5 battery (self-provided)*6

3. Component knowledge

Stepper motor: It is a motor controlled by a series of electromagnetic coils. It can rotate by the exact number of
degrees (or steps) needed, allowing you to move it to a precise position and keep it there. It does this by supplying
power to the coil inside the motor in a very short time, but you must always supply power to the motor to keep it in the
position you want. There are two basic types of stepping motors, namely unipolar stepping motor and bipolar stepping
motor. In this project, we use a 28-BYJ48 unipolar stepper motor.

130 Chapter 5. Arduino Project

keyestudio WiKi

Working Principle:
The stepper motor is mainly composed of a stator and a rotor. The stator is fixed. As shown in the figure below, the
part of the coil group A, B, C, and D will generate a magnetic field when the coil group is energized. The rotor is the
rotating part. As follows, the middle part of the stator, two poles are permanent magnets.

Single -phase four beat: At the beginning, the coils of group A are turned on, and the poles of the rotor point at A
coil. Next, the group A coil are disconnected, and the group B coils are turned on. The rotor will turn clockwise to the
group B. Then, group B is disconnected, group C is turned on, and the rotor is turned to group C. After that, group C
is disconnected, and group D is turned on, and the rotor is turned to group D. Finally, group D is disconnected, group
A is turned on, and the rotor is turned to group A coils. Therefore, rotor turns 180° and continuously rotates B-C-D-A,
which means it runs a circle (eight phase). As shown below, he rotation principle of stepper motor is A - B C - D - A.

You make order inverse(D - C - B - A - D . . .) if you want to make stepper motor rotate anticlockwise.

5.21. Project 20Stepping Motor 131

keyestudio WiKi

Half-phase and eight beat: 8 beat adopts single and dual beat wayA - AB B - BC - C - CD - D - DA - A . . . rotor
will rotate half phase in this order. For example, when A coil is electrifiedrotor faces to A coil , then A and B coil are
connected, on this condition, the strongest magnetic field produced lies in the central part of AB coil, which means
rotating half-phase clockwise.

Stepper Motor Parameters:
The rotor rotates one circle when the stepper motor we provide rotates 32 phases and with the output shaft driven by
1:64 reduction geared set. Therefore the rotation (a circle) of output shaft requires 32 * 64 = 2048 phases.

The step angle of 4-beat mode of 5V and 4-phase stepper motor is 11.25. And the step angle of 8-beat mode is 5.625,
the reduction ratio is 1:64.

ULN2003Stepper Motor Drive Board: It is a stepper motor driver, which converts the weak signal into a stronger
control signal to drive the stepper motor.

The following schematic diagram shows how to use the ULN2003 stepper motor driver board interface to connect a
unipolar stepper motor to the pins of the ESP32, and shows how to use four TIP120 interfaces.

132 Chapter 5. Arduino Project

keyestudio WiKi

4. Wiring Diagram

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder **“2. Windows System****2. C_Tutorial\2. Projects\Project 20Step-
ping Motor\Project_20_Stepping_Motor”.

//**
/*
* Filename : Drive Stepper Motor
* Description : Use ULN2003 to drive the stepper motor.
* Auther : http//www.keyestudio.com
*/
// Conncet the port of the stepper motor driver
int outPorts[] = {15, 16, 17, 18};

void setup() {
// set pins to output
for (int i = 0; i < 4; i++) {
pinMode(outPorts[i], OUTPUT);

}
}

void loop()
{
// Rotate a full turn
moveSteps(true, 32 * 64, 3);

(continues on next page)

5.21. Project 20Stepping Motor 133

keyestudio WiKi

(continued from previous page)

delay(1000);
// Rotate a full turn towards another direction
moveSteps(false, 32 * 64, 3);
delay(1000);

}

//Suggestion: the motor turns precisely when the ms range is between 3 and 20
void moveSteps(bool dir, int steps, byte ms) {
for (unsigned long i = 0; i < steps; i++) {
moveOneStep(dir); // Rotate a step
delay(constrain(ms,3,20)); // Control the speed

}
}

void moveOneStep(bool dir) {
// Define a variable, use four low bit to indicate the state of port
static byte out = 0x01;
// Decide the shift direction according to the rotation direction
if (dir) { // ring shift left
out != 0x08 ? out = out << 1 : out = 0x01;

}
else { // ring shift right
out != 0x01 ? out = out >> 1 : out = 0x08;

}
// Output singal to each port
for (int i = 0; i < 4; i++) {
digitalWrite(outPorts[i], (out & (0x01 << i)) ? HIGH : LOW);

}
}

void moveAround(bool dir, int turns, byte ms){
for(int i=0;i<turns;i++)
moveSteps(dir,32*64,ms);

}
void moveAngle(bool dir, int angle, byte ms){

moveSteps(dir,(angle*32*64/360),ms);
}
//**

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the four LEDs (D1,D2,D3 ,D4) on the ULN2003 drive module will light up. The stepper motor rotates
clockwise first, then counterclockwise, and repeat these actions in an endless loop.

134 Chapter 5. Arduino Project

keyestudio WiKi

5.22 Project 21Relay

1. Introduction

In our daily life, we usually use communication to drive electrical equipments, and sometimes we use switches to
control electrical equipments. If the switch is connected directly to the ac circuit, leakage occurs and people are in
danger. Therefore, from the perspective of safety, we specially designed this relay module with NO(normally open)
end and NC(normally closed) end. In this project, we will learn a relatively special and easy-to-use switch, which is
the relay module.

2. Components

ESP32*1 Breadboard*1 Relay Module*1 M-F Dupont Wires USB Cable*1

3. Component knowledge

Relay: It is an “automatic switch” that uses a small current to control the operation of a large current.

Input voltage3.3V-5V

Rated load5A 250VAC (NO/NC) 5A 24VDC (NO/NC)

The rated load means that devices with dc voltage of 24V or AC voltage of 250V can be controlled using 3.3V-5V
microcontrollers.

Schematic diagram of Relay

4. Wiring Diagram

media/1741d3cb0405c740378ef7ef96df6072.png

5.22. Project 21Relay 135

keyestudio WiKi

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 21Relay\Project_21_Relay”.

//**
/*
* Filename : Relay
* Description : Relay turn on and off.
* Auther : http//www.keyestudio.com
*/
##define Relay 15 // defines digital 15
void setup()
{
pinMode(Relay, OUTPUT); // sets "Relay" to "output"
}
void loop()
{
digitalWrite(Relay, HIGH); // turns on the relay
delay(1000); //delays 1 seconds
digitalWrite(Relay, LOW); // turns off the relay
delay(1000); // delays 1 seconds
}
//**

6. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the relay will cycle on and off, on for 1 second, off for 1 second. At the same time, you can hear the sound
of the relay on and off, and you can also see the change of the indicator light on the relay.

5.23 Project 22Dimming Light

1. Introduction

A potentiometer is a three-terminal resistor with sliding or rotating contacts that forms an adjustable voltage divider.
It works by changing the position of the sliding contacts across a uniform resistance. In the potentiometer, the entire
input voltage is applied across the whole length of the resistor, and the output voltage is the voltage drop between the
fixed and sliding contact.

In this project, we will learn how to use ESP32 to read the values of the potentiometer, and make a dimming lamp with
LED.

2. Components

136 Chapter 5. Arduino Project

keyestudio WiKi

ESP32*1 Breadboard*1 Potentiometer*1 Red LED*1

220Resistor*1 Jumper Wires USB Cable*1

3. Component knowledge

Adjustable potentiometer: It is a kind of resistor and an analog electronic component, which has two states of 0 and
1(high level and low level). The analog quantity is different, its data state presents a linear state such as 1 ~ 1024

ADC : An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or binary
form consisting of 1s and 0s. The range of our ADC on ESP32 is 12 bits, that means the resolution is 2^12=4096, and
it represents a range (at 3.3V) will be divided equally to 4096 parts. The rage of analog values corresponds to ADC
values. So the more bits the ADC has, the denser the partition of analog will be and the greater the precision of the
resulting conversion.

Subsection 1: the analog in rang of 0V—3.3/4095 V corresponds to digital 0;

Subsection 2: the analog in rang of 3.3/4095 V—2*3.3 /4095V corresponds to digital 1;

. . .

The following analog will be divided accordingly.

5.23. Project 22Dimming Light 137

keyestudio WiKi

The conversion formula is as follows:

DAC The reversing of this process requires a DAC, Digital-to-Analog Converter. The digital I/O port can output high
level and low level (0 or 1), but cannot output an intermediate voltage value. This is where a DAC is useful. ESP32
has two DAC output pins with 8-bit accuracy, GPIO25 and GPIO26, which can divide VCC

(here is 3.3V) into 2^8=256 parts. For example, when the digital quantity is 1, the output voltage value is 3.3/256 *1 V,
and when the digital quantity is 128, the output voltage value is 3.3/256*128=1.65V, the higher the accuracy of DAC,
the higher the accuracy of output voltage value will be.

The conversion formula is as follows:

ADC on ESP32
ESP32 has 16 pins can be used to measure analog signals. GPIO pin sequence number and analog pin definition are
shown in the following table

DAC on ESP32
ESP32 has two 8-bit digital analog converters to be connected to GPIO25 and GPIO26 pins, respectively, and it is
immutable. As shown in the following table

The DAC pin number is already defined in ESP32’s code base; for example, you can replace GPIO25 with DAC1 in
the code.

4. Read the ADC value, DAC value and voltage value of the potentiometer
We connect the potentiometer to the analog IO port of ESP32 to read the ADC value, DAC value and voltage value of
the potentiometer, please refer to the wiring diagram below

media/0cda3256a0930404abc097ec8ffa3013.png

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 22Dimming
Light\Project_22.1_Read_Potentiometer_Analog_Value”.

//**
/*

(continues on next page)

138 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

* Filename : Read Potentiometer Analog Value
* Description : Basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
##define PIN_ANALOG_IN 36 //the pin of the Potentiometer

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You will see that the serial port monitor window will print out the ADC
value, DAC value and voltage value of the potentiometer. When turning the potentiometer handle, the ADC value,
DAC value and voltage value will change. As shown below:

5. Wiring diagram of the dimming lamp

5.23. Project 22Dimming Light 139

keyestudio WiKi

In the previous step, we read the ADC value, DAC value and voltage value of the potentiometer. Now we need to convert
the ADC value of the potentiometer into the brightness of the LED to make a lamp that can adjust the brightness.The
wiring diagram is as follows:

media/3396bd77169711de6e15da73f14c8afb.png

6. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 22Dimming
Light\Project_22.2_Dimming_Light”.

//**
/*
* Filename : Dimming Light
* Description : Controlling the brightness of LED by potentiometer.
* Auther : http//www.keyestudio.com
*/
##define PIN_ANALOG_IN 36 //the pin of the potentiometer
##define PIN_LED 15 // the pin of the LED
##define CHAN 0
void setup() {
ledcSetup(CHAN, 1000, 12);
ledcAttachPin(PIN_LED, CHAN);

}

void loop() {
int adcVal = analogRead(PIN_ANALOG_IN); //read adc
int pwmVal = adcVal; // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}
//**

7. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that turn the potentiometer handle and the brightness of the LED will change accordingly.

140 Chapter 5. Arduino Project

keyestudio WiKi

5.24 Project 23Flame Alarm

1. Introduction

Fire is a terrible disaster and fire alarm systems are very useful in housescommercial buildings and factories. In this
project, we will use ESP32 to control a flame sensor, a buzzer and a LED to simulate fire alarm devices. This is a
meaningful maker activity.

2. Components

5.24. Project 23Flame Alarm 141

keyestudio WiKi

ESP32*1 Breadboard*1 Red LED*1 Active Buzzer*1

Flame Sensor*1 220Resistor*1 10KResistor*1 Jumper Wires

NPN transistor(S8050)*1 1k Resistor*1 USB Cable*1

3. Component knowledge

The flame emits a certain amount IR light that is invisible to the human eye, but our flame sensor can detect it and
alert a microcontroller(such as ESP32) that a fire has been detected. It has a specially designed infrared receiver tube
to detect the flame and then convert the flame brightness into a fluctuating level signal. The short pin of the receiving
triode is negative pole and the other long pin is positive pole. We should connect the short pin (negative) to 5V and the
long pin (positive) to the analog pin, a resistor and GND. As shown in the figure below

142 Chapter 5. Arduino Project

keyestudio WiKi

Note: Since vulnerable to radio frequency radiation and temperature changes, the flame sensor should be kept away
from heat sources like radiators, heaters and air conditioners, as well as direct irradiation of sunlight, headlights and
incandescent light.

4. Read the ADC value, DAC value and voltage value of the flame sensor
We first use a simple code to read the ADC value, DAC value and voltage value of the flame sensor and print them out.
Please refer to the wiring diagram below

media/76ce57355da1df27e049bdc6e19f0650.png

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “ Arduino-Codes\Project 23Flame
Alarm\Project_23.1_Read_Analog_Value_Of_Flame_Sensor ”.

//**
/*

(continues on next page)

5.24. Project 23Flame Alarm 143

keyestudio WiKi

(continued from previous page)

* Filename : Read Analog Value Of Flame Sensor
* Description : Basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
##define PIN_ANALOG_IN 36 //the pin of the Flame sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You will see that the serial port monitor window will print out the ADC
value, DAC value and voltage value of the flame sensor. When the sensor is closed to fire,the ADC value,DAC value
and voltage value will get greater. Conversely, the ADC value,DAC value and voltage value decrease.

5. Wiring diagram of the flame alarm

144 Chapter 5. Arduino Project

keyestudio WiKi

Next, we will use a flame sensor, a buzzer, and a LED to make an interesting project, that is flame alarm. When flame
is detected, the LED flashes and the buzzer alarms.

media/e9fa0e50df23c1f2e58fdd319ad21b4c.png

6. Project codeNote the threshold of 500 in the code can be reset itself as required)

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 23Flame
Alarm\Project_23.2_Flame_Alarm”.

//**
/*
* Filename : Flame Alarm
* Description : Controlling the buzzer and LED by flame sensor.
* Auther : http//www.keyestudio.com
*/
##define PIN_ADC0 36 //the pin of the flame sensor
##define PIN_LED 15 // the pin of the LED
##define PIN_BUZZER 4 // the pin of the buzzer

void setup() {
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_BUZZER, OUTPUT);
pinMode(PIN_ADC0, INPUT);

}

void loop() {
int adcVal = analogRead(PIN_ADC0); //read the ADC value of flame sensor
if (adcVal >= 500) {
digitalWrite (PIN_BUZZER, HIGH); //turn on buzzer
digitalWrite(PIN_LED, HIGH); // turn on LED
delay(500); // wait a second.
digitalWrite (PIN_BUZZER, LOW);
digitalWrite(PIN_LED, LOW); // turn off LED
delay(500); // wait a second

}
else
{

digitalWrite(PIN_LED, LOW); //turn off LED
digitalWrite (PIN_BUZZER, LOW); //turn off buzzer

}
}
//**

7. Project result

5.24. Project 23Flame Alarm 145

keyestudio WiKi

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that when the flame sensor detects the flame, the LED will flash and the buzzer will alarm; otherwise, the LED
does not light up and the buzzer does not sound.

5.25 Project 24Night Lamp

1.Introduction

Sensors or components are ubiquitous in our daily life. For example, some public street lamps will automatically turn
on at night and turn off during the day. Why? In fact, this make use of a photosensitive element that senses the intensity
of external ambient light. When the outdoor brightness decreases at night, the street lights will turn on automatically.
In the daytime, the street lights will automatically turn off. the principle of which is very simple, In this Project, we
use ESP32 to control a LED to achieve the effect of the street light.

2. Components

ESP32*1 Breadboard*1 Red LED*1 10KResistor*1

Photoresistor*1 220Resistor*1 Jumper Wires USB Cable*1

3. Component knowledge

Photoresistor : It is a kind of photosensitive resistance, its principle is that the photoresistor surface receives brightness
(light) to reduce the resistance, the resistance value will change with the detected intensity of the ambient light . With
this characteristic, we can use the photosensitive resistance to detect the light intensity. Photosensitive resistance and
its electronic symbol are as follows

The following circuit is used to detect changes in resistance values of photoresistors

146 Chapter 5. Arduino Project

keyestudio WiKi

In the circuit above, when the resistance of the photoresistor changes due to the change of light intensity, the voltage
between the photoresistor and resistance R2 will also change. Thus, the intensity of light can be obtained by measuring
this voltage.

4. Read the ADC value, DAC value and voltage value of the photoresistor

We first use a simple code to read the ADC value, DAC value and voltage value of the photoresistor and print them out.
Please refer to the following wiring diagram

media/b762098c798beb08e4d433137c317dc7.png

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “2. Windows System****2. C_Tutorial\2. Projects\Project 24Night
Lamp\Project_24.1_Read_Photosensitive_Analog_Value”.

//**
/*
* Filename : Read Photosensitive Analog Value

(continues on next page)

5.25. Project 24Night Lamp 147

keyestudio WiKi

(continued from previous page)

* Description : Basic usage of ADC
* Auther : http//www.keyestudio.com
*/
##define PIN_ANALOG_IN 36 //the pin of the photosensitive sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You will see that the serial port monitor window will print out the ADC
valueDAC value and voltage value of the photoresistor. When the light intensity around the photoresistor is gradually
reduced, the ADC value, DAC value and voltage value will gradually increase. On the contrary, the ADC value, DAC
value and voltage value decreases gradually.

5. Wiring diagram of the light-controlled lamp

148 Chapter 5. Arduino Project

keyestudio WiKi

We made a small dimming lamp in the front, now we will make a light controlled lamp. The principle is the same, that
is, the ESP32 takes the ADC value of the sensor, and then adjusts the brightness of the LED.

media/77a0c534501f51e7fe7aa221e4db71d9.png

6. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder**“2. Windows System****\2. C_Tutorial\2. Projects\Project 24Night
Lamp\Project_24.2_Night_Lamp”.

//**
/*
* Filename : Night Lamp
* Description : Controlling the brightness of LED by photosensitive sensor.
* Auther : http//www.keyestudio.com
*/
##define PIN_ANALOG_IN 36 // the pin of the photosensitive sensor
##define PIN_LED 15 // the pin of the LED
##define CHAN 0
##define LIGHT_MIN 372
##define LIGHT_MAX 2048
void setup() {
ledcSetup(CHAN, 1000, 12);
ledcAttachPin(PIN_LED, CHAN);

}

void loop() {
int adcVal = analogRead(PIN_ANALOG_IN); //read adc
int pwmVal = map(constrain(adcVal, LIGHT_MIN, LIGHT_MAX), LIGHT_MIN, LIGHT_MAX, 0,␣

→˓4095); // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}
//**

7. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see thatwhen the intensity of light around the photoresistor is reduced, the LED will be bright, on the contraty, the
LED will be dim.

5.25. Project 24Night Lamp 149

keyestudio WiKi

5.26 Project 25Human Induction Lamp

1. Introduction

Human body induction lamp is used commonly in the dark corridor area. With the development of science and technol-
ogy, the use of the human body induction lamp is very common in our real life, such as the corridor of the community,
the bedroom of the room, the garage of the dungeon, the bathroom and so on. The human induction lamp are generally
composed of a human body infrared sensor, a led, a photoresistor sensor and so on.

In this project, we will learn how to use a Human Body Infrared Sensor, a led, and a photoresistor to make a human
induction lamp.

2. Components

ESP32*1 Breadboard*1 Red LED*1 10KResistor*1 Jumper
Wires

USB Cable*1

Photoresistor*1 Human Body Infrared
Sensor*1

220Resistor*1 M-F Dupont
Wires

3. Wiring Diagram

media/69f49d65054a9246acf4adc534217027.png

4. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 25Human Induction
Lamp\Project_25_Human_ Induction_Lamp”.

//**
/*
* Filename : Human Induction Lamp
* Description : Controlling the LED by photosensitive sensor and PIR motion sensor.
* Auther : http//www.keyestudio.com
*/
##define PIN_ADC0 36 //the pin of the photosensitive sensor
##define PIN_LED 4 // the pin of the LED

(continues on next page)

150 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

##define pirPin 15 // the pin of the PIR motion sensor
byte pirStat = 0; // the state of the PIR motion sensor
void setup() {

Serial.begin(115200);
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_ADC0, INPUT);
pinMode(pirPin, INPUT);

}

void loop() {
int adcVal = analogRead(PIN_ADC0); //read the ADC value of photosensitive sensor
pirStat = digitalRead(pirPin); //read the value of PIR motion sensor
if (adcVal >= 2000) {

if (pirStat == HIGH){
digitalWrite(PIN_LED, HIGH);//turn on the LED
}

else{
digitalWrite(PIN_LED, LOW);//turn off the LED
}

}
else{

digitalWrite(PIN_LED, LOW);//turn off the LED
}

}
//**

5. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see thatWhen your hand covers the photosensitive part of the photoresistor to simulate darkness, then shake your
other hand in front of the Human Body Infrared Sensor, the external LED will light up. If the photosensitive part of
the photoresistor is not covered, then shake your hand in front of the human infrared sensor and the LED is turned off.

5.27 Project 26Sound Control Fan

1. Introduction

The sound sensor has a built-in capacitive electret microphone and power amplifier which can be used to detect the
sound intensity of the environment. In this project, we use ESP32 to control the sound sensor and the motor module to
simulate a voice-controlled fan.

2. Components

5.27. Project 26Sound Control Fan 151

keyestudio WiKi

ESP32*1 Breadboard*1 Sound Sensor*1

130 Motor Module*1 M-F Dupont Wires USB Cable*1

Keyestudio bread board special power mod-
ule*1

Battery Holder*1 No.5 battery (self-
provided)*6

Fan*1

3. Component knowledge

Sound sensor is usually used to detect the loudness of the sound in the surrounding environment. Microcontrol board
can collect its output signal through the analog input interface.The S pin is an analog output, which is the real-time
output of the microphone voltage signal. The sensor comes with a potentiometer so you can adjust the signal strength.
It also has two fixing holes so that the sensor can be installed on any other equipment. You can use it to make some
interactive works, such as voice-operated switches.

4. Read the ADC value, DAC value and voltage value of the sound sensor

We first use a simple code to read the ADC value, DAC value and voltage value of the sound sensor and print them out.

152 Chapter 5. Arduino Project

keyestudio WiKi

Please refer to the wiring diagram below

media/87fb44c475d1f53aa5905cebfed55ea2.png

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 26Sound Control
Fan\Project_26.1_Read_Sound_Sensor_Analog_Value”.

//**
/*
* Filename : Read Sound Sensor Analog Value
* Description : Basic usage of ADC
* Auther : http//www.keyestudio.com
*/
##define PIN_ANALOG_IN 36 //the pin of the Sound Sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You will see that the serial port monitor window will print out the ADC
valueDAC value and voltage value of the sound sensor.When you clap your hands to the sensor, the ADC valueDAC
value and voltage value will change significantly.

5.27. Project 26Sound Control Fan 153

keyestudio WiKi

5. Wiring diagram of the intelligent fan

Next, we officially entered the project. We used a sound sensor, a motor module and a fan blade to simulate a voice-
controlled fan. The wiring diagram is as follows

(Note: Connect the wires and then install a small fan blade on the DC motor.)

6. Project codeNote The threshold 600 in the code can be reset itself as needed)

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 26Sound Control
Fan\Project_26.2_Sound_Control_Fan”.

//**
/*
* Filename : Sound Control Fan
* Description : Controlling the fan by Sound sensor.
* Auther : http//www.keyestudio.com
*/
##define PIN_ADC0 36 //the pin of the Sound sensor
##define PIN_Motorla 15 // the Motor_IN+ pin of the motor

(continues on next page)

154 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

##define PIN_Motorlb 2 // the Motor_IN- pin of the motor

void setup() {
pinMode(PIN_Motorla, OUTPUT);//set Motorla to OUTPUT
pinMode(PIN_Motorlb, OUTPUT);//set Motorlb to OUTPUT
pinMode(PIN_ADC0, INPUT);//set PIN_ADC2 to INPUT

}

void loop() {
int adcVal = analogRead(PIN_ADC0); //read the ADC value of Sound sensor
if (adcVal > 600) {
digitalWrite(PIN_Motorla,HIGH); //rotate
digitalWrite(PIN_Motorlb,LOW);
delay(5000); //delay 5S

}
else
{
digitalWrite(PIN_Motorla,LOW); //stop rotating
digitalWrite(PIN_Motorlb,LOW);

}
}
//**

7. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, external power supply and power on.
and then you will see that clap your hands to the sound sensor, and when the sound intensity exceeds a threshold, the
small fan rotates; conversely, the small fan doesn’t rotate.

5.28 Project 27Temperature Measurement

1. Introduction

LM35 is a common used and easy-to-use temperature sensor. It doesn’t require any other hardware and you only need
an analog port. The difficulty lies in compiling the code and converting the analog values to Celsius temperature. In
this project, we used a temperature sensor and 3 LEDs to make a temperature tester. When the temperature sensor
touches different temperature objects, the LEDs will show different colors.

2. Components

5.28. Project 27Temperature Measurement 155

keyestudio WiKi

ESP32*1 Breadboard*1 LM35*1 USB Ca-
ble*1

M-F Dupont
Wires

Jumper
Wires

220 Resistor*3 Red LED*1 Yellow LED*1 Green
LED*1

3. Component knowledge

Working principle of LM35 temperature sensor: LM35 temperature sensor is a widely used temperature sensor with
a variety of package types. At room temperature, it can achieve the accuracy of 1/4°C without additional calibration
processing. LM35 temperature sensor can produce different voltage according to different temperatures, when the
temperature is 0 ℃, it output 0V; If increasing 1 ℃, the output voltage will increase 10mv. The output temperature is
0℃ to 100℃, the conversion formula is as follows

4. Read the temperature value of LM35

We first use a simple code to read the value of the temperature sensor and printing them out, wiring diagram is shown
below

media/041471b9fabd75ef9dc3951598e342f8.png

156 Chapter 5. Arduino Project

keyestudio WiKi

LM35 output is given to analog pin GPIO36 of the ESP32, this analog voltage is converted to its digital form and
processed to get the temperature reading.

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 27Temperature Measure-
ment\Project_27.1_Read_LM35_Temperature_Value”.

//**
/*
* Filename : Read LM35 Temperature Value
* Description : ADC value is converted to LM35 temperature value
* Auther : http//www.keyestudio.com
*/
##define PIN_ANALOG_IN 36 //the pin of the Temperature Sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//Calculate the measured voltage value,Celsius and Fahrenheit valuesthrough the formula,
//and print these data through the serial port monitor.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
float temperatureC = (voltage * 1000.0) / 10.0 ;
float temperatureF = (temperatureC * 1.8) + 32.0;
Serial.print("ADC Value: " + String(adcVal));
Serial.print("--DAC Value: " + String(dacVal));
Serial.print("--Voltage Value: " + String(voltage) + "V");
Serial.print("--temperatureC: " + String(temperatureC) + "℃");
Serial.println("--temperatureF: " + String(temperatureF) + "F");
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You will see that the serial port monitor window will print out the
temperature values read by the LM35 temperature sensor. Hold the LM35 element by hand, the temperature value read
by the LM35 temperature sensor will change.

5.28. Project 27Temperature Measurement 157

keyestudio WiKi

5. Wiring diagram of the temperature measurement

Now we use a LM35 temperature sensor and three LED lights to do a temperature test. When the LM35 temperature
sensor senses different temperatures, different LED lights will light up. Follow the diagram below for wiring.

6. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 27Temperature Measure-
ment\Project_27.2_Temperature_Measurement”.

(Note: The temperatureC threshold in the code can be reset itself as required.)

//**
/*
* Filename : Temperature Measurement
* Description : Different leds light up when the LM35 senses different temperatures
* Auther : http//www.keyestudio.com
*/
##define PIN_ADC0 36 //the pin of the LM35 Sensor
##define PIN_GREENLED 4 //the pin of the Green led
##define PIN_YELLOWLED 2 //the pin of the Yellow led
##define PIN_REDLED 15 //the pin of the Red led
void setup() {
Serial.begin(115200);
pinMode(PIN_GREENLED, OUTPUT); //set PIN_GREENLED to OUTPUT

(continues on next page)

158 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

pinMode(PIN_YELLOWLED, OUTPUT);//set PIN_YELLOWLED to OUTPUT
pinMode(PIN_REDLED, OUTPUT);//set PIN_REDLED to OUTPUT
pinMode(PIN_ADC0, INPUT);//set PIN_ADC0 to INPUT

}

void loop() {
int adcVal = analogRead(PIN_ADC0);
double voltage = adcVal / 4095.0 * 3.3;
float temperatureC = (voltage * 1000.0) / 10.0 ;
float temperatureF = (temperatureC * 1.8) + 32.0;
Serial.print("ADC Value: " + String(adcVal));
Serial.print("---Voltage Value: " + String(voltage) + "V");
Serial.print("---temperatureC: " + String(temperatureC) + "℃");
Serial.println("---temperatureF: " + String(temperatureF) + "F");
if (temperatureC >= 25) {
delay(100);
digitalWrite(PIN_GREENLED, LOW);
digitalWrite(PIN_YELLOWLED, LOW);
digitalWrite(PIN_REDLED, HIGH);

}
else if (temperatureC >= 20 && temperatureC < 25) {
digitalWrite(PIN_GREENLED, LOW);
digitalWrite(PIN_YELLOWLED, HIGH);
digitalWrite(PIN_REDLED, LOW);

}
else {
digitalWrite(PIN_GREENLED, HIGH);
digitalWrite(PIN_YELLOWLED, LOW);
digitalWrite(PIN_REDLED, LOW);

}

delay(500);
}
//**

7. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you will
see that the monitor displays the temperature values read by the LM35 temperature sensor. When the LM35 temperature
sensor senses different temperatures, different LEDs will light up.

5.29 Project 28Rocker control light

1. Introduction

The rocker module is a component with two analog inputs and one digital input. It is widely used in areas such as game
operationrobot control and drone control. In this project, we use ESP32 and a joystick module to control RGB, so that
you can have a deeper understanding of the principle and operation of the joystick module in practice.

2. Components

5.29. Project 28Rocker control light 159

keyestudio WiKi

ESP32*1 Breadboard*1 Rocker Module*1 USB Cable*1 M-F Dupont
Wires

RGB LED*1 220Resistor*3 Jumper Wires

3. Component knowledge

Rocker module: It mainly uses PS2 joystick components. In fact, the joystick module has 3 signal terminal pins,
which simulate a three-dimensional space. The pins of the joystick module are GND, VCC, and signal terminals (B, X,
Y). The signal terminals X and Y simulate the X-axis and Y-axis of the space. When controlling, the X and Y signal
terminals of the module are connected to the analog port of the microcontroller. The signal terminal B simulates the Z
axis of the space, it is generally connected to the digital port and used as a button.

VCC is connected to the microcontroller power output VCC (3.3V or 5V), GND is connected to the microcontroller
GND, the voltage in the original state is about 1.65V or 2.5V. In the X-axis direction, when moving in the direction
of the arrow, the voltage value increases, and the maximum voltage can be reached. Moving in the opposite direction
of the arrow, the voltage value gradually decreases to the minimum voltage. In the Y-axis direction, the voltage value
decreases gradually as it moves in the direction of the arrow on the module, decreasing to the minimum voltage. As
the arrow is moved in the opposite direction, the voltage value increases and can reach the maximum voltage.

In the Z-axis direction, the signal terminal B is connected to the digital port and outputs 0 in the original state and
outputs 1 when pressed. In this way, we can read the two analog values and the high and low level conditions of the
digital port to determine the operating status of the joystick on the module.

Features:
Input VoltageDC 3.3V ~ 5V

Output SignalX/Y dual axis analog value +Z axis digital signal

[Range](javascript:;) [of](javascript:;) [Application](javascript:;)Suitable for control point coordinate movement in
plane as well as control of two degrees of freedom steering gear, etc.

[product](javascript:;) [feature](javascript:;)sExquisite appearance, joystick feel superior, simple operation, sensitive
response, long service life.

4. Read the value of the Rocker Module

160 Chapter 5. Arduino Project

keyestudio WiKi

We must use ESP32’s analog IO port to read the value from the X/Y pin of the rocker module and use the digital IO
port to read the digital signal of the button. Please connect the wires according to the wiring diagram below

media/b611755eacc4c603e6c0555aced929cb.png

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder**“Arduino-Codes\Project 28Rocker control
light\Project_28.1_Read_Rocker_Value”**.

//**
/*
* Filename : Read Rocker Value
* Description : Read data from Rocker.
* Auther : http//www.keyestudio.com
*/
int xyzPins[] = {36, 39, 14}; //x,y,z pins
void setup() {
Serial.begin(115200);
pinMode(xyzPins[0], INPUT); //x axis.
pinMode(xyzPins[1], INPUT); //y axis.
pinMode(xyzPins[2], INPUT_PULLUP); //z axis is a button.

}

// In loop(), use analogRead () to read the value of axes X and Y
//and use digitalRead () to read the value of axis Z, then display them.
void loop() {
int xVal = analogRead(xyzPins[0]);
int yVal = analogRead(xyzPins[1]);
int zVal = digitalRead(xyzPins[2]);
Serial.println("X,Y,Z: " + String(xVal) + ", " + String(yVal) + ", " + String(zVal));
delay(500);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You will see that the serial port monitor window will print out the
analog and digital values of the current joystick. Moving the joystick or pressing it will change the analog and digital
values.

5.29. Project 28Rocker control light 161

keyestudio WiKi

5. Wiring diagram of Rocker control light

We just read the value of the rocker module, we need to do something with the rocker module and RGB here, Follow
the diagram below for wiring

media/4ec49b488fedf216d03e49f83bc8443a.png

162 Chapter 5. Arduino Project

keyestudio WiKi

6. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “2. Windows System****2. C_Tutorial\2. Projects\Project
28Rocker control lightProject_28.2_Rocker_Control_Light”.

//**
/*
* Filename : Rocker Control Light
* Description : Control RGB to light different colors by Rocker.
* Auther : http//www.keyestudio.com
*/
int x_Pin = 36; //x pin
int y_Pin = 39; //y pin
int z_Pin = 14; //z pin
int ledPins[] = {4, 0, 2}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels

void setup() {
pinMode(x_Pin, INPUT); //x axis.
pinMode(y_Pin, INPUT); //y axis.
pinMode(z_Pin, INPUT_PULLUP); //z axis is a button.
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

// In loop(), use analogRead () to read the value of axes X and Y
//and use digitalRead () to read the value of axis Z, then display them.
void loop() {
int xVal = analogRead(x_Pin);
int yVal = analogRead(y_Pin);
int zVal = digitalRead(z_Pin);
if (xVal < 1000){

ledcWrite(chns[0], 255); //Common cathode LED, high level to turn on the led.
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 0);

}
else if (xVal > 3000){

ledcWrite(chns[0], 0);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 0);

}
else if (yVal < 1000){

ledcWrite(chns[0], 0);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 255);

}
else if (yVal > 3000){

ledcWrite(chns[0], 255);
ledcWrite(chns[1], 255);

(continues on next page)

5.29. Project 28Rocker control light 163

keyestudio WiKi

(continued from previous page)

ledcWrite(chns[2], 255);
}

}
//**

7. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that If the rocker is moved to the far left in the X direction, the RGB light turns red. If the rocker is moved to
the far right in the X direction, the RGB light turns green. If the rocker is moved to the up in the Y direction, the RGB
light turns white. If the rocker is moved to the down in the Y direction, the RGB light turns blue.

media/9c2d0d8777200827b16c49b752d45c4c.jpeg

5.30 Project 29Temperature Humidity Meter

1. Introduction

In winter, the humidity in the air is very low, that is, the air is very dry, Coupled with cold, the skin of the human body
is easy to be too dry and cracked, so you need to use a humidifier to increase the humidity of the air at home, but how
do you know that the air is too dry? Then you need equipment to detect air humidity. In this Project, we will how to
use the temperature and humidity sensor. We use the sensor to make a thermohygrometer, and also combined with a
LCD 128X32 DOT to display the temperature and humidity values.

2. Components

ESP32*1 Breadboard*1 Temperature and Humidity Sensor*1

LCD 128X32 DOT*1 M-F Dupont Wires USB Cable*1

3. Component knowledge

164 Chapter 5. Arduino Project

keyestudio WiKi

Temperature and humidity sensor: It is a temperature and humidity composite sensor with calibrated digital signal
output, its precision humidity is±5%RH, temperature is±2℃, range humidity is 20 to 90%RH, and temperature is 0 to
50℃. The temperature and humidity sensor applies dedicated digital module acquisition technology and temperature
and humidity sensing technology to ensure extremely high reliability and excellent long-term stability of the product.
The temperature and humidity sensor includes a resistive-type humidity measurement and an NTC temperature mea-
surement component, which is very suitable for temperature and humidity measurement applications where accuracy
and real-time performance are not required.

The operating voltage is in the range of 3.3V to 5.5V.

The temperature and humidity sensor has three pins, which are VCCGND and S. S is the pin for data output, using
serial communication.

Single bus format definition of Temperature and Humidity Sensor

//**
/*
* Filename : Temperature and Humidity Sensor
* Description : Use XHT11 to measure temperature and humidity.Print the result to the␣
→˓serial port.
* Auther : http//www.keyestudio.com
*/
##include "xht11.h"
//gpio13
xht11 xht(13);

unsigned char dht[4] = {0, 0, 0, 0};//Only the first 32 bits of data are received, not␣
→˓the parity bits
void setup() {

Serial.begin(115200);//Start the serial port monitor and set baud rate to 115200
}

void loop() {
if (xht.receive(dht)) { //Returns true when checked correctly
Serial.print("RH:");
Serial.print(dht[0]); //The integral part of humidity, DHT [0] is the fractional part
Serial.print("% ");
Serial.print("Temp:");
Serial.print(dht[2]); //The integral part of temperature, DHT [3] is the fractional␣

→˓part
Serial.println("C");

} else { //Read error
Serial.println("sensor error");

}
delay(1000); //It takes 1000ms to wait for the device to read

}
//**

Data sequence diagram of Temperature and Humidity Sensor
When MCU sends a start signal, the Temperature and Humidity Sensor changes from the low-power-consumption mode
to the high-speed mode, waiting for MCU completing the start signal. Once it is completed, the Temperature and Hu-
midity Sensor sends a response signal of 40-bit data and triggers a signal acquisition. The signal is sent as shown in the

5.30. Project 29Temperature Humidity Meter 165

keyestudio WiKi

figure:

Combined with the code, you can understand better.

The XHT11 temperature and humidity sensor can easily add temperature and humidity data to your DIY electronic
projects. It is perfect for remote weather stations, home environmental control systems, and farm or garden monitoring
systems.

Specification:
Working voltage: +5V

Temperature range: 0°C to 50°C, error of ± 2°C

Humidity range: 20% to 90% RH,± 5% RH error

Digital interface

Schematic diagram of Temperature and Humidity Sensor:

4. Read temperature and humidity value

166 Chapter 5. Arduino Project

keyestudio WiKi

media/5d6dd3f19b4323d212bb95e3e4d43743.png

How to add the xht11 library
If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

This code uses a library named “xht11”, if you haven’t installed it yet, please do so before learning. The steps to add
third-party libraries are as follows:

Open the Arduino IDEclick“Sketch”→“Include Library”→“Add .zip Library. . . ”. In the pop-up window, find the
file named “2 Windows System\2. C_Tutorial\3.Libraries\xht11.ZIP” which locates in this directory. Select the
xht11.ZIP file and then click“Open”.

5.30. Project 29Temperature Humidity Meter 167

keyestudio WiKi

After the xht11 library was added, You can open the code we provideIf you haven’t downloaded the code file, please
click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder **“Arduino-Codes\Project 29Temperature Humidity Me-
ter\Project_29.1_Detect_Temperature_Humidity”.

//**
/*
* Filename : Temperature Humidity Meter
* Description : LCD displays the value of temperature and humidity.
* Auther : http//www.keyestudio.com
*/
##include "xht11.h"
##include "lcd128_32_io.h"

//gpio13
xht11 xht(13);
unsigned char dht[4] = {0, 0, 0, 0};//Only the first 32 bits of data are received, not␣
→˓the parity bits

lcd lcd(21, 22); //Create lCD128 *32 pinsda->21 scl->22

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //clear

}
char string[10];

//lcd displays humidity and temperature values
void loop() {
if (xht.receive(dht)) { //Returns true when checked correctly
}

lcd.Cursor(0,0); //Set display position
lcd.Display("Temper:"); //Setting the display
lcd.Cursor(0,8);
lcd.DisplayNum(dht[2]);
lcd.Cursor(0,11);

(continues on next page)

168 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

lcd.Display("C");
lcd.Cursor(2,0);
lcd.Display("humid:");
lcd.Cursor(2,8);
lcd.DisplayNum(dht[0]);
lcd.Cursor(2,11);
lcd.Display("%");
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, and open
the serial monitor and then set baud rate to 115200. You will see the current temperature and humidity value detected
by the sensor from the serial monitor. As shown in the following figure:

5. Wiring diagram of the thermohygrometer

Now we start to print the values of the temperature and humidity sensor with LCD_128X32_DOT. We will see the
corresponding values on the screen of LCD_128X32_DOT. Let’s get started with this project. Please connect cables
according to the following wiring diagram

media/6c82bb28bd1fcd7a1f72108e8a4a70b6.png

6. Project code

The xht11 and lcd128_32_io libraries have been added previously, so you don’t need to add them again. If not, you
need to add xht11 and lcd128_32_io libraries. For the method of adding the xht11 library, please refer to the above

5.30. Project 29Temperature Humidity Meter 169

keyestudio WiKi

method of this Project, and for the method of adding the lCD128_32_IO library, please refer to “Project 17: I2C 128
32 LCD”.

After the xht11 and lcd128_32_io libraries were added, You can open the code we provideIf you haven’t downloaded
the code file, please click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 29Temperature Humidity Me-
ter\Project_29.2_Temperature_Humidity_Meter”.

//***
/*
* Filename : Temperature Humidity Meter
* Description : LCD displays the value of temperature and humidity.
* Auther : http//www.keyestudio.com
*/
##include "xht11.h"
##include "lcd128_32_io.h"

//gpio13
xht11 xht(13);
unsigned char dht[4] = {0, 0, 0, 0};//Only the first 32 bits of data are received, not␣
→˓the parity bits

lcd lcd(21, 22); //Create lCD128 *32 pinsda->21 scl->22

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //clear

}
char string[10];

//lcd displays humidity and temperature values
void loop() {
if (xht.receive(dht)) { //Returns true when checked correctly
}

lcd.Cursor(0,0); //Set display position
lcd.Display("Temper:"); //Setting the display
lcd.Cursor(0,8);
lcd.DisplayNum(dht[2]);
lcd.Cursor(0,11);
lcd.Display("C");
lcd.Cursor(2,0);
lcd.Display("humid:");
lcd.Cursor(2,8);
lcd.DisplayNum(dht[0]);
lcd.Cursor(2,11);
lcd.Display("%");
delay(200);

}
//***

7.Project result
Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the LCD 128X32 DOT will display temperature and humidity value in the current environment.

170 Chapter 5. Arduino Project

keyestudio WiKi

5.31 Project 30Ultrasonic Ranger

1. Introduction The HC-SR04 ultrasonic sensor is a very affordable distance sensor, mainly used for obstacle avoid-
ance in various robotic projects. It is also used for water level sensing and even as a parking sensor. We treat
the ultrasonic sensors as bat’s eyes, in the dark, bats can still identify objects in front of them and directions
through ultrasound. In this project, we use ESP32 to control a ultrasonic sensor and LEDs to simulate ultrasonic
rangefinder.

2. Components

ESP32*1 Breadboard*1 Ultrasonic Sensor*1 Red LED*4

M-F Dupont Wires 220Resistor*4 Jumper Wires USB Cable*1

3. Component knowledge

HC-SR04 Ultrasonic Sensor : Like bats, sonar is used to determine the distance to an object. It provides accurate non-
contact range detection, high-precision and stable readings. Its operation is not affected by sunlight or black materials,
just like a precision camera (acoustically softer materials like cloth are difficult to detect). It has an ultrasonic transmitter
and receiver.

media/e6f6037071e434febf7090b56ac35802.png

In front of the ultrasonic sensor are two metal cylinders, these are the converters. The converters convert the mechanical
energy into an electrical signal. In the ultrasonic sensor, there are transmitting converters and receiving converters.
The transmitting converter converts the electric signal into an ultrasonic pulse, and the receiving converter converts the
reflected ultrasonic pulse back to an electric signal. If you look at the back of the ultrasonic sensor, you will see an IC
behind the transmitting converter, which controls the transmitting converter. There is also an IC behind the receiving
converter, which is a quad operational amplifier that amplifies the signal generated by the receiving converter into a
signal large enough to be transmitted to the Microcontroller.

Sequence diagrams:
The figure shows the sequence diagram of the HC-SR04. To start the measurement, the Trig of SR04 must receive at
least 10us high pulse (5V), which will activate the sensor to emit 8 cycles of 40kHz ultrasonic pulses, and wait for the

5.31. Project 30Ultrasonic Ranger 171

keyestudio WiKi

reflected ultrasonic pulses. When the sensor detects ultrasound from the receiver, it sets the Echo pin to high (5V) and
delays it by one cycle (width), proportional to the distance. To get the distance, measure the width of the Echo pin.

Time = Echo pulse width, its unit is “us” (microseconds) $𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑚) = 𝑡𝑖𝑚𝑒/58$

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖𝑛𝑐ℎ) = 𝑡𝑖𝑚𝑒/148

4. Read the distance value of the ultrasonic sensor:

We will start with a simple ultrasonic ranging and print the measured distance.

The HC-SR04 ultrasonic sensor has four pins, they are Vcc, Trig, Echo and GND. The Vcc pin provides the power
source for generating ultrasonic pulses and is connected to Vcc (+5V). The GND pin is grounded. The Trig pin is where
the Arduino sends a signal to start the ultrasonic pulse. The Echo pin is where the ultrasonic sensor sends information
about the duration of the ultrasonic pulse to the Control board. Wiring as shown below:

172 Chapter 5. Arduino Project

keyestudio WiKi

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 30Ultrasonic Ranger\Project 30.1_Ultra-
sonic_Ranging”.

//**
/*
* Filename : Ultrasonic Ranging
* Description : Use the ultrasonic module to measure the distance.

(continues on next page)

5.31. Project 30Ultrasonic Ranger 173

keyestudio WiKi

(continued from previous page)

* Auther : http//www.keyestudio.com
*/
const int TrigPin = 13; // define TrigPin
const int EchoPin = 14; // define EchoPin.
int duration = 0; // Define the initial value of the duration to be 0
int distance = 0;//Define the initial value of the distance to be 0
void setup()
{
pinMode(TrigPin , OUTPUT); // set trigPin to output mode
pinMode(EchoPin , INPUT); // set echoPin to input mode
Serial.begin(115200); // Open serial monitor at 115200 baud to see ping results.

}
void loop()
{
// make trigPin output high level lasting for 10s to triger HC_SR04
digitalWrite(TrigPin , HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin , LOW);
// Wait HC-SR04 returning to the high level and measure out this waitting time
duration = pulseIn(EchoPin , HIGH);
// calculate the distance according to the time
distance = (duration/2) / 28.5 ;
Serial.print("Distance: ");
Serial.print(distance); //Serial port print distance value
Serial.println("cm");
delay(300); // Wait 100ms between pings (about 20 pings/sec).

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You will see that the serial port monitor window will print out the
distance between the ultrasonic sensor and the object.

174 Chapter 5. Arduino Project

keyestudio WiKi

5. Wiring diagram of the ultrasonic rangefinder

Next, we will use ESP32 to control an ultrasonic sensor and 4 LEDs to simulate ultrasonic rangefinder. Connect the
line as shown below

media/910ed1be8be94411a090afb95af86d1a.png

6. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder **“2. Windows System\2. C_Tutorial\2. Projects\Project 30Ultrasonic
Ranger\Project_30.2_Ultrasonic_Ranger”.

//***
/*
* Filename : Ultrasonic Ranger
* Description : four leds are controlled by ultrasonic ranging.
* Auther : http//www.keyestudio.com
*/
const int TrigPin = 13; // define TrigPin
const int EchoPin = 14; // define EchoPin.
const int PIN_LED1 = 4; // define PIN_LED1
const int PIN_LED2 = 0; // define PIN_LED2
const int PIN_LED3 = 2; // define PIN_LED3
const int PIN_LED4 = 15; // define PIN_LED4
int duration = 0; // define the initial value of the duration to be 0
int distance = 0; // define the initial value of the distance to be 0
void setup()
{
pinMode(TrigPin , OUTPUT); // set trigPin to output mode
pinMode(EchoPin , INPUT); // set echoPin to input mode
pinMode(PIN_LED1 , OUTPUT); // set PIN_LED1 to output mode
pinMode(PIN_LED2 , OUTPUT); // set PIN_LED2 to output mode
pinMode(PIN_LED3 , OUTPUT); // set PIN_LED3 to output mode
pinMode(PIN_LED4 , OUTPUT); // set PIN_LED4 to output mode
Serial.begin(115200); // Open serial monitor at 115200 baud to see ping results.

}
void loop()
{
// make trigPin output high level lasting for 10s to triger HC_SR04
digitalWrite(TrigPin , HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin , LOW);

// Wait HC-SR04 returning to the high level and measure out this waitting time
duration = pulseIn(EchoPin , HIGH);

// calculate the distance according to the time
distance = (duration/2) / 28.5 ;
Serial.print("Distance: ");
Serial.print(distance); //Serial port print distance value

(continues on next page)

5.31. Project 30Ultrasonic Ranger 175

keyestudio WiKi

(continued from previous page)

Serial.println("cm");
if (distance <= 5)
{
digitalWrite(PIN_LED1, HIGH);

}
else
{
digitalWrite(PIN_LED1, LOW);

}
if (distance <= 10)
{
digitalWrite(PIN_LED2, HIGH);

}
else
{
digitalWrite(PIN_LED2, LOW);

}
if (distance <= 15)
{
digitalWrite(PIN_LED3, HIGH);

}
else
{
digitalWrite(PIN_LED3, LOW);

}
if (distance <= 20)
{
digitalWrite(PIN_LED4, HIGH);

}
else
{
digitalWrite(PIN_LED4, LOW);

}
}
//**

7. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open
the serial monitor and set the baud rate to 115200. You will see that the serial port monitor window will print outthe
distance between the ultrasonic sensor and the object, and the corresponding LED will light up when we move our
hand in front of the ultrasonic sensor.

176 Chapter 5. Arduino Project

keyestudio WiKi

5.32 Project 31Temperature Instrument

1. Introduction

Thermistor is a kind of resistor whose resistance depends on temperature changes, which is widely used in gardening,
home alarm system and other devices. Therefore, we can use the feature to make a temperature instrument.

2. Components

ESP32*1 Breadboard*1 Thermistor*1 10KResistor*1

M-F Dupont Wires LCD 128X32 DOT*1 Jumper Wires USB Cable*1

3. Component knowledge

Thermistor: A Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance
of the Thermistor will change. We can take advantage of this characteristic by using a thermistor to detect temperature
intensity. A Thermistor and its electronic symbol are shown below:

The relationship between resistance value and temperature of a thermistor is

Where:
Rt is the thermistor resistance under T2 temperature;

5.32. Project 31Temperature Instrument 177

keyestudio WiKi

R is the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of e;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.

For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.

The circuit connection method of the Thermistor is similar to photoresistor, as the following

We can use the value measured by the ADC converter to obtain the resistance value of Thermistor, and then we can use
the formula to obtain the temperature value.

Therefore, the temperature formula can be derived as:

4. Read the value of the Thermistor

First we will learn the thermistor to read the current ADC value, voltage value and temperature value and print them
out. Please connect the wires according to the wiring diagram below

178 Chapter 5. Arduino Project

keyestudio WiKi

media/806fd81bf8a761b4ae1a638489c426ce.png

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 31Temperature Instru-
ment\Project_31.1_Read_the_thermistor_analog_value”.

//**
/*
* Filename : Thermomter
* Description : Making a thermometer by thermistor.
* Auther : http//www.keyestudio.com
*/
##define PIN_ANALOG_IN 36
void setup() {
Serial.begin(115200);

}

void loop() {
int adcValue = analogRead(PIN_ANALOG_IN); //read ADC pin
double voltage = (float)adcValue / 4095.0 * 3.3; // calculate voltage
double Rt = 10 * voltage / (3.3 - voltage); //calculate resistance␣

→˓value of thermistor
double tempK = 1 / (1 / (273.15 + 25) + log(Rt / 10) / 3950.0); //calculate␣

→˓temperature (Kelvin)
double tempC = tempK - 273.15; //calculate␣

→˓temperature (Celsius)
Serial.printf("ADC value : %d,\tVoltage : %.2fV, \tTemperature : %.2fC\n", adcValue,␣

→˓voltage, tempC);
delay(1000);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open
the serial monitor and set the baud rate to 115200. You will see that the serial port monitor window prints out the
thermistor’s current ADC value, voltage value and temperature value. Try pinching the thermistor with your index
finger and thumb (don’t touch wires) for a while, and you will see the temperature increase.

5.32. Project 31Temperature Instrument 179

keyestudio WiKi

5. Wiring diagram of the temperature instrument

media/5a437bfdcad012211e15cab54e35dad7.png

6. Adding the lcd128_32_io library
The lcd128_32_io library had been added previously, so you don’t need to add it again. If not, you need to add the
lcd128_32_io library. The steps to add third-party libraries are as follows:

Open the Arduino IDEclick “Sketch”→“Include Library”→“Add .ZIP Library. . . ”. In the pop-up window, find the file
named “2. Windows System\2. C_Tutorial\3. Libraries\LCD_128X32.ZIP” which locates in this directory. Select
the LCD_128X32.ZIP file and then click “Open”.

180 Chapter 5. Arduino Project

keyestudio WiKi

7. Project code
After the lcd128_32_io library was added, You can open the code we provideIf you haven’t downloaded the code file,
please click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 31Temperature Instru-
ment\Project_31.2_Temperature_Instrument”.

//**
/*
* Filename : Temperature Instrument
* Description : LCD displays the temperature of thermistor.

(continues on next page)

5.32. Project 31Temperature Instrument 181

keyestudio WiKi

(continued from previous page)

* Auther : http//www.keyestudio.com
*/
##include "lcd128_32_io.h"

##define PIN_ANALOG_IN 36

lcd lcd(21, 22); //Create lCD128 *32 pinsda->21 scl->22

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //clear

}
char string[10];

void loop() {
int adcValue = analogRead(PIN_ANALOG_IN); //read ADC pin
double voltage = (float)adcValue / 4095.0 * 3.3; // calculate voltage
double Rt = 10 * voltage / (3.3 - voltage); //calculate resistance␣

→˓value of thermistor
double tempK = 1 / (1 / (273.15 + 25) + log(Rt / 10) / 3950.0); //calculate␣

→˓temperature (Kelvin)
double tempC = tempK - 273.15; //calculate␣

→˓temperature (Celsius)
lcd.Cursor(0,0); //Set display position
lcd.Display("Voltage:"); //Setting the display
lcd.Cursor(0,8);
lcd.DisplayNum(voltage);
lcd.Cursor(0,11);
lcd.Display("V");
lcd.Cursor(2,0);
lcd.Display("tempC:");
lcd.Cursor(2,8);
lcd.DisplayNum(tempC);
lcd.Cursor(2,11);
lcd.Display("C");
delay(200);

}
//**

8. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the LCD 128X32 DOT displays the voltage value of the thermistor and the temperature value in the current
environment.

182 Chapter 5. Arduino Project

keyestudio WiKi

5.33 Project 32RFID

1. Introduction

Nowadays, many residential districts use this function to open the door by swiping the card, which is very convenient.
In this Project, we will learn how to use RFID(radio frequency identification) wireless communication technology and
read and write the key chain card (white card) and control the steering gear rotation by RFID-MFRC522 module.

2. Components

ESP32*1 Breadboard*1 RFID-RC522 Module*1

M-F Dupont Wires Servo*1 White Card*1

Key Chain*1 Jumper wires USB Cable*1

3. Component knowledge

RFID: RFID (Radio Frequency Identification) is a wireless communication technology. A complete RFID system
is generally composed of the responder and reader. Generally, we use tags as responders, and each tag has a unique
code, which is attached to the object to identify the target object. The reader is a device for reading (or writing) tag
information.

Products derived from RFID technology can be divided into three categories: passive RFID products, active RFID
products and semi active RFID products. And Passive RFID products are the earliest, the most mature and most widely
used products in the market among others. It can be seen everywhere in our daily life such as, the bus card, dining
card, bank card, hotel access cards, etc., and all of these belong to close-range contact recognition. The main operating
frequency of Passive RFID products are: 125KHZ (low frequency), 13.56MHZ (high frequency), 433MHZ (ultrahigh
frequency) and 915MHZ (ultrahigh frequency). Active and semi active RFID products work at higher frequencies.

The RFID module we use is a passive RFID product with the operating frequency of 13.56MHz.

RFID-RC522 Module The MFRC522 is a highly integrated reader/writer IC for contactless communication at
13.56MHz. The MFRC522’s internal transmitter is able to drive a reader/writer antenna designed to communicate
with ISO/IEC 14443 A/MIFARE cards and transponders without additional active circuitry. The receiver module pro-
vides a robust and efficient implementation for demodulating and decoding signals from ISO/IEC 14443 A/MIFARE
compatible cards and transponders. The digital module manages the complete ISO/IEC 14443A framing and error
detection(parity and CRC) functionality.

This RFID Module uses MFRC522 as the control chip and adopts I2C(Inter-Integrated Circuit) interface.

5.33. Project 32RFID 183

keyestudio WiKi

Specifications:
Operating voltage: DC 3.3V-5V

Operating current: 13—100mA/DC 5V

Idling current: 10-13mA/DC 5V

Sleep current: <80uA

Peak current: <100mA

Operating frequency: 13.56MHz

Maximum power: 0.5W

Supported card types: mifare1 S50, mifare1 S70, mifare UltraLight, mifare Pro, mifare Desfire.

Environmental operating temperature: -20 to 80 degrees Celsius.

Environment storage temperature: -40 to 85 degrees Celsius.

Relative Humidity: 5% to 95%.

Data transfer rate: The maximum is 10Mbit/s.

4. RFID Read UID

We will read the UNIQUE ID number (UID) of the RFID card and identify the type of the RFID card, and display the
relevant information through the serial port. The wiring diagram is shown below

media/1cdb3ffd7f392f29451aeed5c3257133.png

Adding the MFRC522_I2C and Wire libraries
If you haven’t installed the MFRC522_I2C and Wire libraries yet, please do so before learning. The steps to add
third-party libraries are as follows:

Open the Arduino IDEclick“Sketch”→“Include Library”→“Add .ZIP Library. . . ”. In the pop-up window, find the file
named “2. Windows System\2. C_Tutorial\3.Libraries\MFRC522_I2C.ZIP” which locates in this directory. Select
the MFRC522_I2C.ZIPfile and then click“Open”.

184 Chapter 5. Arduino Project

keyestudio WiKi

Then, in the pop-up window, find the file named **“**2. Windows System\2. C_Tutorial\3.Libraries\Wire.ZIP which
locates in this directory. Select the Wire.Zip file and then click“Open”.

5.33. Project 32RFID 185

keyestudio WiKi

After the MFRC522_I2C and Wire libraries were added, You can open the code we provideIf you haven’t downloaded
the code file, please click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 32RFID\Project_32.1_RFID_Read_UID”.

//**
/*
* Filename : RFID
* Description : RFID reader UID
* Auther : http//www.keyestudio.com
*/
##include <Wire.h>
##include "MFRC522_I2C.h"
// IIC pins default to GPIO21 and GPIO22 of ESP32
// 0x28 is the i2c address of SDA, if doesn't matchplease check your address with i2c.
MFRC522 mfrc522(0x28); // create MFRC522.

void setup() {
Serial.begin(115200); // initialize and PC's serial communication
Wire.begin(); // initialize I2C
mfrc522.PCD_Init(); // initialize MFRC522
ShowReaderDetails(); // dispaly PCD - MFRC522 read carder
Serial.println(F("Scan PICC to see UID, type, and data blocks..."));

}

void loop() {
//
if (! mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadCardSerial()) {
delay(50);
return;

}

// select one of door cards. UID and SAK are mfrc522.uid.

// save UID
Serial.print(F("Card UID:"));
for (byte i = 0; i < mfrc522.uid.size; i++) {

(continues on next page)

186 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
Serial.print(mfrc522.uid.uidByte[i], HEX);

}
Serial.println();

}

void ShowReaderDetails() {
// attain the MFRC522 software
byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg);
Serial.print(F("MFRC522 Software Version: 0x"));
Serial.print(v, HEX);
if (v == 0x91)
Serial.print(F(" = v1.0"));

else if (v == 0x92)
Serial.print(F(" = v2.0"));

else
Serial.print(F(" (unknown)"));

Serial.println("");
// when returning to 0x00 or 0xFF, may fail to transmit communication signals
if ((v == 0x00) || (v == 0xFF)) {
Serial.println(F("WARNING: Communication failure, is the MFRC522 properly connected?

→˓"));
}

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, and open
the serial monitor and then set baud rate to 115200. You will see that place the door card and key chain close to the
module sensor area respectively, the serial monitor display the card number and key chain value respectively, as shown
below:

5.33. Project 32RFID 187

keyestudio WiKi

Note: the door card value and key chain value may be different for different RRFID -RC522 door cards and key chains.

5. Wiring diagram of the RFID MFRC522

Now we use the RFID -RC522 module, white card/key chain and Servo to simulate an intelligent access control system.
When the white card/key chain close to the RFID -RC522 module induction area, the servo rotates. Wiring according
to the figure below

media/3ae6c0f1098d2aee34c51e7a96c25571.png

6. Adding the MFRC522_I2C, Wire and ESP32Servo libraries

The MFRC522_I2C, Wire and ESP32Servo libraries had been added previously, so you don’t need to add it again. If
not, you need to add the MFRC522_I2C, Wire and ESP32Servo libraries. The steps to add third-party libraries are
as follows:

First, add the ESP32Servo library

Open the Arduino IDEclick“Sketch”→“Include Library”→“Add .zip Library. . . ”. In the pop-up window, find the file
named**“2. Windows System\2. C_Tutorial\3.Libraries\ ESP32Servo-0.8.0.Zip”** which locates in this directory.
Select the ESP32Servo-0.80.Zipfile and then click “Open”.

188 Chapter 5. Arduino Project

keyestudio WiKi

Then, add the MFRC522_I2C and Wire libraries

If both of them are added, just skip this step.

7. Project code

After the MFRC522_I2CWire and ESP32Servo libraries were added, You can open the code we provideIf you haven’t
downloaded the code file, please click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project
32RFID\Project_32.2_RFID_Control_Servo”.

Note: Different RFID-MFRC522 IC cards and keys have diverse values.You can substitute your own IC cards and keys
values for the corresponding values read by the RFID-MFRC522 module in the program, otherwise the servo can’t be
controlled when uploading the test code to the ESP32.

For example: You can replace the rfid_str of the
in the program code with your own IC cards and keys values read by the RFID-MFRC522 module.

//***
/*
* Filename : RFID mfrc522 Control Servo
* Description : RFID controlled steering gear simulated door opening
* Auther : http//www.keyestudio.com
*/
##include <Wire.h>
##include "MFRC522_I2C.h"
// IIC pins default to GPIO21 and GPIO22 of ESP32
// 0x28 is the i2c address of SDA, if doesn't matchplease check your address with i2c.
MFRC522 mfrc522(0x28); // create MFRC522.

##include <ESP32Servo.h>
Servo myservo; // create servo object to control a servo
int servoPin = 15; // Servo motor pin

String rfid_str = "";

void setup() {
Serial.begin(115200);

(continues on next page)

5.33. Project 32RFID 189

keyestudio WiKi

(continued from previous page)

Wire.begin();
mfrc522.PCD_Init();
ShowReaderDetails(); // dispaly PCD - MFRC522 read carder
Serial.println(F("Scan PICC to see UID, type, and data blocks..."));

myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

→˓object
myservo.write(0);
delay(500);

}

void loop() {
if (! mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadCardSerial()) {
delay(50);
return;

}

// select one of door cards. UID and SAK are mfrc522.uid.

// save UID
rfid_str = ""; //String emptying
Serial.print(F("Card UID:"));
for (byte i = 0; i < mfrc522.uid.size; i++) {
rfid_str = rfid_str + String(mfrc522.uid.uidByte[i], HEX); //Convert to string
//Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
//Serial.print(mfrc522.uid.uidByte[i], HEX);

}
Serial.println(rfid_str);

if (rfid_str == "93adf720" || rfid_str == "39b646c2") {
myservo.write(180);
delay(500);
Serial.println(" open the door!");
}

}

void ShowReaderDetails() {
// attain the MFRC522 software
byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg);
Serial.print(F("MFRC522 Software Version: 0x"));
Serial.print(v, HEX);
if (v == 0x91)
Serial.print(F(" = v1.0"));

else if (v == 0x92)
Serial.print(F(" = v2.0"));

else
Serial.print(F(" (unknown)"));

Serial.println("");
// when returning to 0x00 or 0xFF, may fail to transmit communication signals
if ((v == 0x00) || (v == 0xFF)) {
Serial.println(F("WARNING: Communication failure, is the MFRC522 properly connected?

(continues on next page)

190 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

→˓"));
}

}
//***

8. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, and open
the serial monitor and then set baud rate to 115200. You will see that when using the white card or a key card swiping,
the serial port monitor displays white card or key card information and “open the door”. As shown in the picture below,
and the servo rotates to the corresponding angle to simulate opening the door.

5.34 Project 33Keypad Door

1. Introduction

Commonly used digital button sensor, one button uses an IO port. However, it will occupy too many IO ports when we
need a lot of buttons. In order to save the use of IO ports, the multiple buttons are made into a matrix type, through the
control of the line and row to achieve less IO port control of multiple buttons. In this project, we will learn ESP32 and
thin film 4*4 matrix keyboard control a servo and a buzzer.

2. Components

5.34. Project 33Keypad Door 191

keyestudio WiKi

ESP32*1 Breadboard*1 Servo*1 Active Buzzer*1

44 Membrane Matrix Keyboard1 Jumper Wires USB Cable*1 1kResistor*1

NPN transistor(S8050)*1

3. Component knowledge

4*4 Matrix keyboard A Keypad Matrix is a device that integrates a number of keys in one package. As is shown
below, a 4x4 Keypad Matrix integrates 16 keys:

Similar to the integration of an LED Matrix, the 4x4 Keypad Matrix has each row of keys connected with one pin and
this is the same for the columns. Such efficient connections reduce the number of processor ports required. The internal
circuit of the Keypad Matrix is shown below.

192 Chapter 5. Arduino Project

keyestudio WiKi

The method of usage is similar to the Matrix LED, by using a row or column scanning method to detect the state of
each key’s position by column and row. Take column scanning method as an example, send low level to the first 4
column (Pin4), detect level state of row 1, 2, 3, 4 to judge whether the key A, B, C, D are pressed. Then send low level
to column3, 2, 1 in turn to detect whether other keys are pressed. By this means, you can get the state of all of the keys.

4. Read the key value of the 4*4 matrix keyboard

We start with a simple code to read the values of the 4*4 matrix keyboard and print them in the serial monitor. Its
wiring diagram is shown below

How to add the Keypad library
If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

This code uses a library named “Keypad”, if you haven’t installed it yet, please do so before learning. The steps to add
third-party libraries are as follows:

There are two ways to add libraries:

The first way, open the Arduino IDE, click“Sketch”→“Include Library”→“Manage Libraries. . . ”. Enter“Keypad”in
the search box, select“Keypad”and click“Update”to install. Please refer to the following operations :

5.34. Project 33Keypad Door 193

keyestudio WiKi

The second wayopen the Arduino IDEclick “Sketch”→“Include Library”→“Add .ZIP Library. . . ”. In the pop-up win-
dow, find the file named**“2. Windows System****2. C_Tutorial\3.Libraries****Keypad-3.1.1.ZIP”**which lo-
cates in this directory. Select the Keypad-3.1.1.ZIP fileand then click“Open”.

194 Chapter 5. Arduino Project

keyestudio WiKi

After the Keypad library is added, You can open the code we provideIf you haven’t downloaded the code file, please
click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder **“Arduino-Codes\Project 3 **”.

//**
/*
* Filename : 4x4 Matrix Keypad Display
* Description : Get the value for the matrix keyboard
* Auther : http//www.keyestudio.com
*/

(continues on next page)

5.34. Project 33Keypad Door 195

keyestudio WiKi

(continued from previous page)

##include <Keypad.h>

// define the symbols on the buttons of the keypad
char keys[4][4] = {
{'1', '2', '3', 'A'},
{'4', '5', '6', 'B'},
{'7', '8', '9', 'C'},
{'*', '0', '#', 'D'}

};

byte rowPins[4] = {22, 21, 19, 18}; // connect to the row pinouts of the keypad
byte colPins[4] = {17, 16, 4, 0}; // connect to the column pinouts of the keypad

// initialize an instance of class NewKeypad
Keypad myKeypad = Keypad(makeKeymap(keys), rowPins, colPins, 4, 4);

void setup() {
Serial.begin(115200); // Initialize the serial port and set the baud rate to 115200
Serial.println("ESP32 is ready!"); // Print the string "UNO is ready!"

}

void loop() {
// Get the character input
char keyPressed = myKeypad.getKey();
// If there is a character input, sent it to the serial port
if (keyPressed) {
Serial.println(keyPressed);

}
}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, and open
the serial monitor and then set baud rate to 115200. You will see that press the keyboard and the serial port monitor
prints the corresponding key value, as shown below.

196 Chapter 5. Arduino Project

keyestudio WiKi

5. Wiring diagram of the Keypad Door

In the last experiment, we have known the key values of the 4*4 matrix keyboard. Next, we use it as the keyboard to
control a servo and a buzzer.

6. Adding the Keypad and ESP32Servo** **libraries

The Keypad and ESP32Servo libraries had been added previously, so you don’t need to add them again. If not, you
need to add Keypad and ESP32Servo libraries. The steps to add third-party Libraries are as follows:

First, add the ESP32Servo library

Open the Arduino IDEclick“Sketch”→“Include Library”→“Add .ZIP Library. . . ”. In the pop-up window, find the
file named “2. Windows System\2. C_Tutorial\3.Libraries\ESP32Servo-0.8.0.ZIP” which locates in this directory.
Select the ESP32Servo-0.80.ZIP file and then click“Open”.

5.34. Project 33Keypad Door 197

keyestudio WiKi

Then, add the Keypad library

Open the Arduino IDEclick “Sketch”→“Include Library”→“Add .ZIP Library. . . ”. In the pop-up window, find the file
named “2. Windows System\2. C_Tutorial\3.Libraries\Keypad-3.1.1.ZIP” which locates in this directory. Select
the Keypad-3.1.1.ZIP file and then click“Open”.

198 Chapter 5. Arduino Project

keyestudio WiKi

7. Project code

After the Keypad and ESP32Servo libraries were added, You can open the code we provideIf you haven’t downloaded
the code file, please click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder “2. Windows System****2. C_Tutorial\2. Projects\Project 33Key-
pad Door\Project_33.2_Keypad_Door”.

//**
/*
* Filename : Keypad_Door
* Description : Make a simple combination lock.
* Auther : http//www.keyestudio.com

(continues on next page)

5.34. Project 33Keypad Door 199

keyestudio WiKi

(continued from previous page)

*/
##include <Keypad.h>
##include <ESP32Servo.h>

// define the symbols on the buttons of the keypad
char keys[4][4] = {
{'1', '2', '3', 'A'},
{'4', '5', '6', 'B'},
{'7', '8', '9', 'C'},
{'*', '0', '#', 'D'}

};

byte rowPins[4] = {22, 21, 19, 18}; // connect to the row pinouts of the keypad
byte colPins[4] = {17, 16, 4, 0}; // connect to the column pinouts of the keypad

// initialize an instance of class NewKeypad
Keypad myKeypad = Keypad(makeKeymap(keys), rowPins, colPins, 4, 4);

Servo myservo; // Create servo object to control a servo
int servoPin = 15; // Define the servo pin
int buzzerPin = 2; // Define the buzzer pin

char passWord[] = {"1234"}; // Save the correct password

void setup() {
myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

→˓object
// set the high level time range of the servo␣

→˓motor for an accurate 0 to 180 sweep
myservo.write(0); // Set the starting position of the servo motor
pinMode(buzzerPin, OUTPUT);
Serial.begin(115200);

}

void loop() {
static char keyIn[4]; // Save the input character
static byte keyInNum = 0; // Save the the number of input characters
char keyPressed = myKeypad.getKey(); // Get the character input
// Handle the input characters
if (keyPressed) {
// Make a prompt tone each time press the key
digitalWrite(buzzerPin, HIGH);
delay(100);
digitalWrite(buzzerPin, LOW);
// Save the input characters
keyIn[keyInNum++] = keyPressed;
// Judge the correctness after input
if (keyInNum == 4) {
bool isRight = true; // Save password is correct or not
for (int i = 0; i < 4; i++) { // Judge each character of the password is correct␣

→˓or not

(continues on next page)

200 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

if (keyIn[i] != passWord[i])
isRight = false; // Mark wrong passageword if there is any wrong␣

→˓character.
}
if (isRight) { // If the input password is right

myservo.write(90); // Open the switch
delay(2000); // Delay a period of time
myservo.write(0); // Close the switch
Serial.println("passWord right!");

}
else { // If the input password is wrong

digitalWrite(buzzerPin, HIGH);// Make a wrong password prompt tone
delay(1000);
digitalWrite(buzzerPin, LOW);
Serial.println("passWord error!");

}
keyInNum = 0; // Reset the number of the input characters to 0

}
}

}
//**

8. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that press the keypad to input password with 4 characters. If the input is correct(Correct password :1234), the
servo will move to a certain degree, and then return to the original position. If the input is wrong, an input error alarm
will be generated.

5.35 Project 34IR Control Sound and LED

1. Introduction

An infrared(IR) remote control is a low-cost and easy-to-use wireless communication technology. IR light is very
similar to visible light, except that its wavelength is slightly longer. This means that infrared rays cannot be detected by
the human eye, which is perfect for wireless communication. For example, when you press a button on the TV remote
control, an infrared LED will switch on and off repeatedly at a frequency of 38,000 times per second, transmitting
information (such as volume or channel control) to the infrared sensor on the TV.

We’ll start by explaining how common infrared communication protocols work. Then we will start the project with a
remote control and an infrared receiver component.

2. Components

5.35. Project 34IR Control Sound and LED 201

keyestudio WiKi

ESP32*1 Breadboard*1 IR Receiver *1 RGB LED*1

IR Remote Controller*1 Active buzzer*1 10KResistor*1 220Resistor*3

NPN transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

3. Component knowledge

Infrared RemoteAn infrared(IR) remote control is a device with a certain number of buttons. Pressing down dif-
ferent buttons will make the infrared emission tube, which is located in the front of the remote control, send infrared ray
with different command. Infrared remote control technology is widely used in electronic products such as TVaircondi-
tioning, etc. Thus making it possible for you to switch TV programs and adjust the temperature of the air conditioning
when away from them. The remote control we use is shown below:

The infrared remote controller adopts NEC code and the signal cycle is 110ms.

202 Chapter 5. Arduino Project

keyestudio WiKi

Infrared receiver IR receiver is a component which can receive the infrared light, so we can use it to detect the signal
emitted by the infrared remote control.

The infrared receiver demodules the received infrared signal and converts it back to binary, then passes the information
to the microcontroller.

Infrared signal modulation process diagram

5.35. Project 34IR Control Sound and LED 203

keyestudio WiKi

NEC Infrared communication protocol
NEC Protocol:
To my knowledge the protocol I describe here was developed by NEC (Now Renesas). I’ve seen very similar protocol
descriptions on the internet, and there the protocol is called Japanese Format. I do admit that I don’t know exactly
who developed it. What I do know is that it was used in my late VCR produced by Sanyo and was marketed under the
name of Fisher. NEC manufactured the remote control IC. This description was taken from my VCR’s service manual.
Those were the days, when service manuals were filled with useful information!

Features:
• * 8 bit address and 8 bit command length.

• * Extended mode available, doubling the address size.

• * Address and command are transmitted twice for reliability.

• * Pulse distance modulation.

• * Carrier frequency of 38kHz.

• * Bit time of 1.125ms or 2.25ms.

Modulation:

The NEC protocol uses pulse distance encoding of the bits. Each pulse is a 560µs long 38kHz carrier burst (about
21 cycles). A logical “1” takes 2.25ms to transmit, while a logical “0” is only half of that, being 1.125ms. The
recommended carrier duty-cycle is 1/4 or 1/3.

Protocol:

204 Chapter 5. Arduino Project

keyestudio WiKi

The picture above shows a typical pulse train of the NEC protocol. With this protocol the LSB is transmitted first. In
this case Address 59𝑎𝑛𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑16 is transmitted. A message is started by a 9ms AGC burst, which was used to set
the gain of the earlier IR receivers. This AGC burst is then followed by a 4.5ms space, which is then followed by the
Address and Command. Address and Command are transmitted twice. The second time all bits are inverted and can
be used for verification of the received message. The total transmission time is constant because every bit is repeated
with its inverted length. If you’re not interested in this reliability you can ignore the inverted values, or you can expand
the Address and Command to 16 bits each!

Keep in mind that one extra 560µs burst has to follow at the end of the message in order to be able to determine the
value of the last bit.

A command is transmitted only once, even when the key on the remote control remains pressed. Every 110ms a repeat
code is transmitted for as long as the key remains down. This repeat code is simply a 9ms AGC pulse followed by a
2.25ms space and a 560µs burst.

Extended NEC protocol:
The NEC protocol is so widely used that soon all possible addresses were used up. By sacrificing the address redun-
dancy the address range was extended from 256 possible values to approximately 65000 different values. This way the
address range was extended from 8 bits to 16 bits without changing any other property of the protocol.

By extending the address range this way the total message time is no longer constant. It now depends on the total
number of 1’s and 0’s in the message. If you want to keep the total message time constant you’ll have to make sure
the number 1’s in the address field is 8 (it automatically means that the number of 0’s is also 8). This will reduce the
maximum number of different addresses to just about 13000.

The command redundancy is still preserved. Therefore each address can still handle 256 different commands.

5.35. Project 34IR Control Sound and LED 205

keyestudio WiKi

Keep in mind that 256 address values of the extended protocol are invalid because they are in fact normal NEC protocol
addresses. Whenever the low byte is the exact inverse of the high byte it is not a valid extended address.

4. Decoded infrared signal

We connect the infrared receiving element to the ESP32, according to the wiring diagram below:

media/700496cb1e0d5d23fd63c28469dd3fd0.png

How to add the IRremoteESP8266 library
If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

This code uses a library named “IRremoteESP8266”, if you haven’t installed it yet, please do so before learning. The
steps to add third-party libraries are as follows:

There are two ways to add libraries:

The first way, open the Arduino IDE, click“Sketch”→“Include Library”→“Manage Libraries. . . ”. En-
ter“IRremoteESP8266”in the search box, select“IRremoteESP8266”and click“Update”to install. Please refer to the
following operations :

206 Chapter 5. Arduino Project

keyestudio WiKi

The second wayopen the“Sketch”→“Include Library”→“Add .ZIP Library. . . ”. In the pop-up window, find the file
named**“2. Windows System\2. C_Tutorial\3.Libraries\IRremoteESP8266-2.7.4.ZIP”**which locates in this direc-
tory. Select the IRremoteESP8266-2.7.4.ZIP fileand then click“Open”.

5.35. Project 34IR Control Sound and LED 207

keyestudio WiKi

After the IRremoteESP8266 library is added, You can open the code we provideIf you haven’t downloaded the code
file, please click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 34IR Control Sound And
LED\Project_34.1_Decoded_IR_Signal”.

//**
/*
* Filename : Decoded IR Signal
* Description : Decode the infrared remote control and print it out through the serial␣
→˓port.
* Auther : http//www.keyestudio.com

(continues on next page)

208 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

*/
##include <Arduino.h>
##include <IRremoteESP8266.h>
##include <IRrecv.h>
##include <IRutils.h>

const uint16_t recvPin = 0; // Infrared receiving pin
IRrecv irrecv(recvPin); // Create a class object used to receive class
decode_results results; // Create a decoding results class object

void setup() {
Serial.begin(115200); // Initialize the serial port and set the baud rate to␣

→˓115200
irrecv.enableIRIn(); // Start the receiver
Serial.print("IRrecvDemo is now running and waiting for IR message on Pin ");
Serial.println(recvPin); //print the infrared receiving pin

}

void loop() {
if (irrecv.decode(&results)) { // Waiting for decoding
serialPrintUint64(results.value, HEX);// Print out the decoded results
Serial.println("");
irrecv.resume(); // Release the IRremote. Receive the next value

}
delay(1000);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, and open
the serial monitor and then set baud rate to 115200. You will see that aim the infrared remote control transmitter at
the infrared receiving head, press the button on the infrared controller, and the serial port monitor prints the current
received key code values.

5.35. Project 34IR Control Sound and LED 209

keyestudio WiKi

Write down the code associated with each button, because you will need that information later.

5. Wiring diagram of the infrared remote control

210 Chapter 5. Arduino Project

keyestudio WiKi

media/4912c1622e0eaedb76ea3a9b8ed969c0.png

6. Project code
The IRremoteESP8266 library had been added previously, so you don’t need to add it again. If not, you need to add
the IRremoteESP8266 library. The steps to add third-party libraries are as shown above.

After the IRremoteESP8266 library was added, You can open the code we provideIf you haven’t downloaded the code
file, please click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder “Arduino-Codes\Project 34IR Control Sound And
LED\Project_34.2_IR_Control_Sound_And_LED”.

//**
/*
* Filename : IR Control Sound And LED
* Description : Remote control RGB and Passive buzzer with infrared remote control.
* Auther : http//www.keyestudio.com
*/
##include <Arduino.h>
##include <IRremoteESP8266.h>
##include <IRrecv.h>
##include <IRutils.h>

const uint16_t recvPin = 0; // Infrared receiving pin
IRrecv irrecv(recvPin); // Create a class object used to receive class
decode_results results; // Create a decoding results class object

int ledPins[] = {22, 21, 4}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels
int buzzerPin = 15; // the number of the buzzer pin

void setup() {
irrecv.enableIRIn(); // Start the receiver
pinMode(buzzerPin, OUTPUT);
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

void loop() {
if(irrecv.decode(&results)) { // Waiting for decoding
handleControl(results.value); // Handle the commands from remote control
irrecv.resume(); // Receive the next value

}
}

void handleControl(unsigned long value) {
// Make a sound when it rereives commands

(continues on next page)

5.35. Project 34IR Control Sound and LED 211

keyestudio WiKi

(continued from previous page)

digitalWrite(buzzerPin, HIGH);
delay(100);
digitalWrite(buzzerPin, LOW);
// Handle the commands
if (value == 0xFF6897) // Receive the number '1'
{

ledcWrite(chns[0], 255); //Common cathode LED, high level to turn on the led.
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 0);
delay(1000);

}
else if (value == 0xFF9867) // Receive the number '2'
{

ledcWrite(chns[0], 0);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 0);
delay(1000);

}
else if (value == 0xFFB04F) // Receive the number '3'
{

ledcWrite(chns[0], 0);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 255);
delay(1000);

}
else if (value == 0xFF30CF) // Receive the number '4'
{

ledcWrite(chns[0], 255);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 0);
delay(1000);

}
else if (value == 0xFF18E7) // Receive the number '5'
{

ledcWrite(chns[0], 255);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 255);
delay(1000);

}
else if (value == 0xFF7A85) // Receive the number '6'
{

ledcWrite(chns[0], 0);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 255);
delay(1000);

}
else if (value == 0xFF10EF) // Receive the number '7'
{

ledcWrite(chns[0], 255);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 255);
delay(1000);

(continues on next page)

212 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

}
else{

ledcWrite(chns[0], 0);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 0);
delay(1000);
}

}
//**

7. Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that press the 1 to 7 key of the infrared remote controller, the buzzer will sound once, and the RGB light will
be red, green, blue, yellow, red, blue, green and white respectively. Press another key (except 1 to 7 key), and the RGB
light will go off.

(Note: Before use, we need to remove the plastic sheet from the bottom of the infrared remote controller.)

5.35. Project 34IR Control Sound and LED 213

keyestudio WiKi

5.36 Project 35Bluetooth

This chapter mainly introduces how to make simple data transmission through bluetooth of ESP32 and mobile phones.
Project 35.1 is Classic Bluetooth and Project 35.2 is Bluetooth Control LED.

Project 35.1Classic Bluetooth
1. Components

214 Chapter 5. Arduino Project

keyestudio WiKi

USB Cable*1 ESP32*1

In this tutorial we need to use a Bluetooth APP called Serial Bluetooth Terminal to assist in the experiment. If you’ve
not installed it yet, please do so by clicking: https://www.appsapk.com/serial-bluetooth-terminal/ .The following is its
logo.

2. Component knowledge

ESP32’s integrated Bluetooth function Bluetooth is a short-distance communication system, which can be divided
into two types, namely Bluetooth Low Energy(BLE) and Classic Bluetooth. There are two modes for simple data
transmission: master mode and slave mode.

Master mode
In this mode, works are done in the master device and it can connect with a slave device. And we can search and
select slave devices nearby to connect with. When a device initiates connection request in master mode, it requires
information of the other Bluetooth devices including their address and pairing passkey. After finishing pairing, it can
connect with them directly.

Slave mode
The Bluetooth module in slave mode can only accept connection request from a host computer, but cannot initiate a
connection request. After connecting with a host device, it can send data to or receive from the host device.

Bluetooth devices can make data interaction with each other, as one is in master mode and the other in slave mode.
When they are making datainteraction, the Bluetooth device in master mode searches and selects devices nearby to
connect to. When establishing connection, they can exchange data. When mobile phones exchange data with ESP32,
they are usually in master mode and ESP32 in slave mode.

5.36. Project 35Bluetooth 215

https://www.appsapk.com/serial-bluetooth-terminal/

keyestudio WiKi

Master Slave
3. Wiring Diagram

We can use a USB cable to connect ESP32 mainboard to the USB port on a computer.

4. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 35: Blue-
tooth\Project_35.1_Classic_Bluetooth”.

216 Chapter 5. Arduino Project

keyestudio WiKi

//**
/*
* Filename : Classic Bluetooth--SerialToSerialBT
* Description : ESP32 communicates with the phone by bluetooth and print phone's data␣
→˓via a serial port
* Auther : http//www.keyestudio.com
*/
##include "BluetoothSerial.h"

BluetoothSerial SerialBT;
String buffer;
void setup() {
Serial.begin(115200);
SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.println("\nThe device started, now you can pair it with bluetooth!");

}

void loop() {
if (Serial.available()) {
SerialBT.write(Serial.read());

(continues on next page)

5.36. Project 35Bluetooth 217

keyestudio WiKi

(continued from previous page)

}
if (SerialBT.available()) {
Serial.write(SerialBT.read());

}
delay(20);

}
//**

6. Project result:
Compile and upload the code to the ESP32. After uploading successfullywe will use a USB cable to power on. Open
the serial monitor and set the baud rate to 115200. When you see the serial monitor prints out the character string as
below, it indicates that the Bluetooth of ESP32 is ready and waiting to connect with the mobile phone. (If open the
serial monitor and set the baud rate to 115200, the information is not displayed, please press the RESET button of the
ESP32)

Make sure that the Bluetooth of your phone has been turned on and “Serial Bluetooth Terminal” has been installed.

218 Chapter 5. Arduino Project

keyestudio WiKi

Click “Search” to search Bluetooth devices nearby and select “ESP32 test” to connect to.

Turn on software APP, click the left of the terminal. Select “Devices” .

5.36. Project 35Bluetooth 219

keyestudio WiKi

Select ESP32test in classic Bluetooth mode, and a successful connecting prompt will appear as shown on the right
illustration.

And now data can be transferred between your mobile phone and computer via ESP32.

Send “Hello!” from your phone, when the computer receives it, reply “Hi!” to your phone.

220 Chapter 5. Arduino Project

keyestudio WiKi

Project 35.2Bluetooth Control LED
1. Components

5.36. Project 35Bluetooth 221

keyestudio WiKi

ESP32*1 Breadboard*1

Red LED*1 220Resistor*1 Jumper
Wires

USB Cable*1

2. Wiring diagram

media/0735997593c8858ad6441d8e9867206f.png

3. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 35Blue-
tooth\Project_35.2_Bluetooth_Control_LED”.

222 Chapter 5. Arduino Project

keyestudio WiKi

//**
/*
* Filename : Bluetooth Control LED
* Description : The phone controls esp32's led via bluetooth.

When the phone sends "LED_on," ESP32's LED lights turn on.
When the phone sends "LED_off," ESP32's LED lights turn off.

* Auther : http//www.keyestudio.com
*/
##include "BluetoothSerial.h"
##include "string.h"
##define LED 15
BluetoothSerial SerialBT;
char buffer[20];
static int count = 0;
void setup() {
pinMode(LED, OUTPUT);
SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.begin(115200);
Serial.println("\nThe device started, now you can pair it with bluetooth!");

}
(continues on next page)

5.36. Project 35Bluetooth 223

keyestudio WiKi

(continued from previous page)

void loop() {
while(SerialBT.available())
{
buffer[count] = SerialBT.read();
count++;

}
if(count>0){
Serial.print(buffer);
if(strncmp(buffer,"led_on",6)==0){
digitalWrite(LED,HIGH);

}
if(strncmp(buffer,"led_off",7)==0){
digitalWrite(LED,LOW);

}
count=0;
memset(buffer,0,20);

}
}
//**

4. Project result
Compile and upload the code to the ESP32, after uploading successfullywe will use a USB cable to power on. The
operation of the APP is the same as Project 35.1, you only need to change the sending content to “LED on”and “LED
off” to operate LEDs on the ESP32. Data sent from mobile APP:

Display on the serial port of the computer:

224 Chapter 5. Arduino Project

keyestudio WiKi

The phenomenon of LED

Attention: If the sending content isn’t “led-on”or “led-off”, then the state of LED will not change. If the LED is on,
when receiving irrelevant content, it keeps on; Correspondingly, if the LED is off, when receiving irrelevant content,
it keeps off.

5.36. Project 35Bluetooth 225

keyestudio WiKi

5.37 Project 36WiFi Station Mode

1. Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn about ESP32’s WiFi Station mode.

2. Components

USB Cable*1 ESP32*1

3. Wiring

Connect the ESP32 to the USB port on your computer using a USB cable.

4. Component knowledge

Station mode: When ESP32 selects Station mode, it acts as a WiFi client. It can connect to the router network and
communicate with other devices on the router via WiFi connection. As shown below, the PC is connected to the router,
and if ESP32 wants to communicate with the PC, it needs to be connected to the router.

media/f74baff97695aa2ee33a8c19370d2547.png

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 36WiFi Station
Mode\Project_36_WiFi_Station_Mode”.

226 Chapter 5. Arduino Project

keyestudio WiKi

Because the names and passwords of routers in various places are different, before the code runs, users need to enter
the correct router’s name and password in the box as shown in the illustration above.

5.37. Project 36WiFi Station Mode 227

keyestudio WiKi

//**
/*
* Filename : WiFi Station
* Description : Connect to your router using ESP32
* Auther : http//www.keyestudio.com
*/
##include <WiFi.h> //Include the WiFi Library header file of ESP32.

//Enter correct router name and password.
const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password

void setup(){
Serial.begin(115200);
delay(2000);
Serial.println("Setup start");
WiFi.begin(ssid_Router, password_Router);//Set ESP32 in Station mode and connect it to␣

(continues on next page)

228 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

→˓your router.
Serial.println(String("Connecting to ")+ssid_Router);

//Check whether ESP32 has connected to router successfully every 0.5s.
while (WiFi.status() != WL_CONNECTED){

delay(500);
Serial.print(".");

}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());//Serial monitor prints out the IP address assigned to␣

→˓ESP32.
Serial.println("Setup End");

}

void loop() {
}
//**

6. Project result

After making sure the router name and password are entered correctly, compile and upload the code to ESP32, open
serial monitor and set baud rate to 115200. When ESP32 successfully connects to “ssid_Router”, serial monitor will
print out the IP address assigned to ESP32 by the router. (If open the serial monitor and set the baud rate to 115200,
the information is not displayed, please press the RESET button of the ESP32)

5.37. Project 36WiFi Station Mode 229

keyestudio WiKi

5.38 Project 37WiFi AP Mode

1. Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn about ESP32’s WiFi AP mode.

2. Components

USB Cable*1 ESP32*1

3. Wiring

Connect the ESP32 to the USB port on your computer using a USB cable.

4. Component knowledge

AP mode : When ESP32 selects AP mode, it creates a hotspot network that is separated from the Internet and waits for
other WiFi devices to connect. As shown in the figure below, ESP32 is used as a hotspot. If a mobile phone or PC wants
to communicate with ESP32, it must be connected to the hotspot of ESP32. Only after a connection is established with
ESP32 can they communicate.

230 Chapter 5. Arduino Project

keyestudio WiKi

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 37WiFi AP
Mode\Project_37_WiFi_AP_Mode”.

5.38. Project 37WiFi AP Mode 231

keyestudio WiKi

Before the code runs, you can make any changes to the AP name and password for ESP32 in the box as shown in the
illustration above. Of course, you can leave it alone by default.

232 Chapter 5. Arduino Project

keyestudio WiKi

//**
/*
* Filename : WiFi AP
* Description : Set ESP32 to open an access point
* Auther : http//www.keyestudio.com
*/
##include <WiFi.h> //Include the WiFi Library header file of ESP32.

const char *ssid_AP = "ESP32_WiFi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

IPAddress local_IP(192,168,1,108);//Set the IP address of ESP32 itself
IPAddress gateway(192,168,1,1); //Set the gateway of ESP32 itself
IPAddress subnet(255,255,255,0); //Set the subnet mask for ESP32 itself

void setup(){
Serial.begin(115200);
delay(2000);

(continues on next page)

5.38. Project 37WiFi AP Mode 233

keyestudio WiKi

(continued from previous page)

Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);
Serial.println(WiFi.softAPConfig(local_IP, gateway, subnet) ? "Ready" : "Failed!");
Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");
Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());
Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());

}else{
Serial.println("Failed!");

}
Serial.println("Setup End");

}

void loop() {
}
//**

6. Project result

Enter the ESP32 AP name and password correctly, compile and upload the code to ESP32, open the serial monitor and
set the baud rate to 115200. And then it will display as follows.

(If open the serial monitor and set the baud rate to 115200, the information is not displayed, please press the RESET
button of the ESP32)

234 Chapter 5. Arduino Project

keyestudio WiKi

When observing the print information of the serial monitor, turn on the WiFi scanning function of your phone, and you
can see the ssid_AP on ESP32, which is called “ESP32_Wifi” in this Code. You can enter the password “12345678”
to connect it or change its AP name and password by modifying Code.

5.38. Project 37WiFi AP Mode 235

keyestudio WiKi

5.39 Project 38WiFi Station+AP Mode

1. Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn ESP32’s WiFi Station+AP mode.

2. Components

USB Cable*1 ESP32*1

3. Wiring

Connect the ESP32 to the USB port on your computer using a USB cable.

4. Component knowledge

AP+Station mode: In addition to AP mode and Station mode, ESP32 can also use AP mode and Station mode at the
same time. This mode contains the functions of the previous two modes. Turn on ESP32’s Station mode, connect it to
the router network, and it can communicate with the Internet via the router. At the same time, turn on its AP mode to
create a hotspot network. Other WiFi devices can choose to connect to the router network or the hotspot network to
communicate with ESP32.

5. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 38WiFi Station+AP
Mode\Project_38_WiFi_Station_AP_Mode”.

236 Chapter 5. Arduino Project

keyestudio WiKi

It is analogous to Project 36 and Project 37. Before running the code, you need to modify ssid_Router, password_Router,
ssid_AP and password_AP shown in the box of the illustration above.

5.39. Project 38WiFi Station+AP Mode 237

keyestudio WiKi

//**
/*
* Filename : WiFi AP+Station
* Description : ESP32 connects to the user's router, turning on an access point
* Auther : http//www.keyestudio.com
*/
##include <WiFi.h>

const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password
const char *ssid_AP = "ESP32_WiFi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

void setup(){
Serial.begin(115200);
Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);

(continues on next page)

238 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");
Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());
Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());

}else{
Serial.println("Failed!");

}

Serial.println("\nSetting Station configuration ... ");
WiFi.begin(ssid_Router, password_Router);
Serial.println(String("Connecting to ")+ ssid_Router);
while (WiFi.status() != WL_CONNECTED){
delay(500);
Serial.print(".");

}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());
Serial.println("Setup End");

}

void loop() {
}
//**

6. Project result

After making sure that the code is modified correctly, compile and upload the code to ESP32, open the serial monitor
and set baud rate to 115200.

And then it will display as follows: (If open the serial monitor and set the baud rate to 115200, the information is not
displayed, please press the RESET button of the ESP32)

5.39. Project 38WiFi Station+AP Mode 239

keyestudio WiKi

When observing the print information of the serial monitor, turn on the WiFi scanning function of your phone, and you
can see the ssid_AP on ESP32.

5.40 Project 39: WiFi Test

1. Introduction

In this experiment, we first use the WiFi station mode of ESP32 to read the IP address of WiFi, and then connect WiFi
through app to read the characters sent by each function button on App.

2.Components

240 Chapter 5. Arduino Project

keyestudio WiKi

USB Cable*1 ESP32*1 Smartphone/Tablet *1

3. Wiring

Connect the ESP32 to the USB port on your computer using a USB cable.

4. Install APP:

Android system (Smartphone/Tablet) APP: Go to Google Store to search for keys wifi

App link in Google Store:https://play.google.com/store/apps/details?id=com.keyestudio.esp8266_web_wifi2

Installation steps
Now transfer the keyes wifi.apk file in the folder to android phone or tablet, click keyes wifi.apk file to enter the

5.40. Project 39: WiFi Test 241

https://play.google.com/store/apps/details?id=com.keyestudio.esp8266_web_wifi2

keyestudio WiKi

installation page, click“ALLOW”, then click“INSTALL”, after a while, click“OPEN”after the installation is completed
to enter the APP interface.

242 Chapter 5. Arduino Project

keyestudio WiKi

5.40. Project 39: WiFi Test 243

keyestudio WiKi

media/78c89b91c0af2268f6267813e7923a9b.png

IOS system (Smartphone/Tablet) APP:

a.Open App Store.

b. Enter keyes link in the search box and click Search. The download interface appears. Click“ ”to download
and install the APP of keyes link. The following operations are similar to those of Android system, you can refer to the
steps of Android system above for operation.

244 Chapter 5. Arduino Project

keyestudio WiKi

3. Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download
it:Download Arduino Codes

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 39WiFi Test\Project_39_WiFi_Test”.

//**
/*
* Filename : WIFI Test
* Description : Wifi module test the ip of Wifi
* Auther : http//www.keyestudio.com
*/
// generated by KidsBlock
##include <Arduino.h>
##include <WiFi.h>
##include <ESPmDNS.h>
##include <WiFiClient.h>

String item = "0";
const char* ssid = "ChinaNet-2.4G-0DF0";
const char* password = "ChinaNet@233";
WiFiServer server(80);

void setup() {
Serial.begin(115200);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(500);
Serial.print(".");

}
Serial.println("");
Serial.print("Connected to ");
Serial.println(ssid);
Serial.print("IP address: ");
Serial.println(WiFi.localIP());
server.begin();
Serial.println("TCP server started");
MDNS.addService("http", "tcp", 80);

}

void loop() {
WiFiClient client = server.available();
if (!client) {

return;
}
while(client.connected() && !client.available()){

delay(1);
}
String req = client.readStringUntil('\r');
int addr_start = req.indexOf(' ');
int addr_end = req.indexOf(' ', addr_start + 1);
if (addr_start == -1 || addr_end == -1) {

Serial.print("Invalid request: ");
(continues on next page)

5.40. Project 39: WiFi Test 245

keyestudio WiKi

(continued from previous page)

Serial.println(req);
return;

}
req = req.substring(addr_start + 1, addr_end);
item=req;
Serial.println(item);
String s;
if (req == "/")
{

IPAddress ip = WiFi.localIP();
String ipStr = String(ip[0]) + '.' + String(ip[1]) + '.' + String(ip[2]) + '.' +␣

→˓String(ip[3]);
s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n<!DOCTYPE HTML>\r\n<html>

→˓Hello from ESP32 at ";
s += ipStr;
s += "</html>\r\n\r\n";
Serial.println("Sending 200");
client.println(s);

}
//client.print(s);
client.stop();

}
//**

Special attention: you need to change the user’s Wifi name and Wifi password in the experiment

code to your own Wifi name and Wifi password.

5. Project result

After making sure that the Code is modified correctly, compile and upload the code to ESP32.Note: If

uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears)open the serial monitor and set baud rate to 115200.

In this way, the serial port monitor prints the detected WiFi IP address, then open the WiFi APP and enter the detected
WiFi IP address in the text box in front of the WiFi button (for example, the IP address shown by the serial port
monitor below :192.168.0.168), then click the WiFi button. “403 Forbidden”or“Webpage not available”will change
to“192.168.0.168”, indicating that the APP is already connected to WiFi.

media/ee42a1bde8dd1bc4cb554ccfef1ab9ae.png

Click each function button on the APP by hand, and then the serial port monitor will print the corresponding characters
received. (If open the serial monitor and set the baud rate to 115200, the information is not displayed, please press the

246 Chapter 5. Arduino Project

keyestudio WiKi

RESET button of the ESP32)

)

5.41 Project 40WiFi Smart Home

1. Introduction

In the previous experiment, we have learned the WiFi Station mode, WiFi AP mode and WiFi AP+Station mode of
the ESP32. In this project, we will use ESP32’s WiFi Station mode to control the work of multiple sensors/modules
through APP connection with WiFi to achieve the effect of WiFi smart home.

2. Components

5.41. Project 40WiFi Smart Home 247

keyestudio WiKi

ESP32*1 Breadboard*1 130 Motor*1 5V Relay Module*1 Servo*1

Temperature and Hu-
midity Sensor*1

HC-SR04 Ultra-
sonic Sensor*1

M-F Dupont
Wires

Smartphone/Tablet*1 Jumper
Wires

Battery Holder*1 Battery(self-
provided)*6

USB Cable*1 Keyestudio breadboard special
power module*1

Fan*1

3. Wiring diagram

media/fd7a7efd4bc365e1524011b68217dee5.png

(Note: Connect the wires and then install a small fan blade on the DC motor.)

4. Install APP:

Android system (Smartphone/Tablet) APP:Go to Google Store to search for keys wifi

248 Chapter 5. Arduino Project

keyestudio WiKi

Installation steps

5.41. Project 40WiFi Smart Home 249

keyestudio WiKi

250 Chapter 5. Arduino Project

keyestudio WiKi

5.41. Project 40WiFi Smart Home 251

keyestudio WiKi

media/78c89b91c0af2268f6267813e7923a9b.png

IOS system (Smartphone/Tablet) APP:

a.Open App Store.

b. Enter keyes link in the search box and click Search. The download interface appears. Click“ ”to download
and install the APP of keyes link. The following operations are similar to those of Android system, you can refer to the
steps of Android system above for operation.

252 Chapter 5. Arduino Project

keyestudio WiKi

5. Add the xht11 and ESP32Servo libraries

This code uses two libraries named “xht11” and “ESP32Servo” , if you haven’t installed them yet, please do so before
learning. The steps to add third-party libraries are as follows:

Add the xht11 library first:

Open the Arduino IDEclick“Sketch”→“Include Library”→“Add .zip Library. . . ”. In the pop-up window, find the
file named “2 Windows System\2. C_Tutorial\3.Libraries\xht11.ZIP” which locates in this directory. Select the
xht11.ZIP file and then click“Open”.

Then Add the ESP32Servo library:

Open the Arduino IDEclick “Sketch”→“Include Library”→“Add .ZIP Library. . . ”. In the pop-up window, find the
file named**“2. Windows System\2. C_Tutorial\3.Libraries\ESP32Servo-0.8.0.ZIP”**which locates in this directory.
Select the ESP32Servo-0.80.ZIP fileand then click“Open”.

5.41. Project 40WiFi Smart Home 253

keyestudio WiKi

6. Project code

After the xht11 and ESP32Servo libraries were added, You can open the code we provideIf you haven’t downloaded
the code file, please click on the link to download it:Download Arduino Codes

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 40WiFi Smart
Home\Project_40_WiFi_Smart_Home”.

//**
/*
* Filename : WiFi Smart Home.
* Description : WiFi APP controls Multiple sensors/modules work to achieve the effect␣
→˓of WiFi smart home.
* Auther : http//www.keyestudio.com
*/
##include <Arduino.h>

(continues on next page)

254 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

##include <WiFi.h>
##include <ESPmDNS.h>
##include <WiFiClient.h>

##include "xht11.h"
//gpio15
xht11 xht(15);
unsigned char dht[4] = {0, 0, 0, 0};

##include <ESP32Servo.h>
Servo myservo;
int servoPin = 4;
##define Relay 32
##define IN1 19 //IN1 corresponds to IN+
##define IN2 18 //IN2 corresponds to IN-
##define trigPin 14
##define echoPin 27

int distance1;
String dis_str;
int ip_flag = 1;
int ultra_state = 1;
int temp_state = 1;
int humidity_state = 1;

String item = "0";
const char* ssid = "ChinaNet-2.4G-0DF0"; //the name of user's wifi
const char* password = "ChinaNet@233"; //the password of user's wifi
WiFiServer server(80);
String unoData = "";

void setup() {
Serial.begin(115200);
pinMode(Relay, OUTPUT);
myservo.setPeriodHertz(50);
myservo.attach(servoPin, 500, 2500);
pinMode(IN1, OUTPUT);
pinMode(IN2, OUTPUT);

WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(500);
Serial.print(".");

}
Serial.println("");
Serial.print("Connected to ");
Serial.println(ssid);
Serial.print("IP address: ");
Serial.println(WiFi.localIP());
server.begin();
Serial.println("TCP server started");
MDNS.addService("http", "tcp", 80);

(continues on next page)

5.41. Project 40WiFi Smart Home 255

keyestudio WiKi

(continued from previous page)

digitalWrite(IN1, LOW);
digitalWrite(IN2, LOW);
digitalWrite(Relay, LOW);
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);

}

void loop() {
WiFiClient client = server.available();
if (!client) {

return;
}
while(client.connected() && !client.available()){

delay(1);
}
String req = client.readStringUntil('\r');
int addr_start = req.indexOf(' ');
int addr_end = req.indexOf(' ', addr_start + 1);
if (addr_start == -1 || addr_end == -1) {

Serial.print("Invalid request: ");
Serial.println(req);
return;

}
req = req.substring(addr_start + 1, addr_end);
item=req;
Serial.println(item);
String s;
if (req == "/")
{

IPAddress ip = WiFi.localIP();
String ipStr = String(ip[0]) + '.' + String(ip[1]) + '.' + String(ip[2]) + '.' +␣

→˓String(ip[3]);
s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n<!DOCTYPE HTML>\r\n<html>

→˓Hello from ESP32 at ";
s += ipStr;
s += "</html>\r\n\r\n";
Serial.println("Sending 200");
client.println(s);

}
else if(req == "/btn/0")
{
Serial.write('a');
client.println(F("turn on the relay"));
digitalWrite(Relay, HIGH);

}
else if(req == "/btn/1")
{
Serial.write('b');
client.println(F("turn off the relay"));
digitalWrite(Relay, LOW);

}

(continues on next page)

256 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

else if(req == "/btn/2")
{
Serial.write('c');
client.println("Bring the steering gear over 180 degrees");
myservo.write(180);
delay(200);

}
else if(req == "/btn/3")
{
Serial.write('d');
client.println("Bring the steering gear over 0 degrees");
myservo.write(0);
delay(200);

}
else if(req == "/btn/4")
{
Serial.write('e');
client.println("esp32 already turn on the fans");
digitalWrite(IN1, LOW);
digitalWrite(IN2, HIGH);

}
else if(req == "/btn/5")
{
Serial.write('f');
client.println("esp32 already turn off the fans");
digitalWrite(IN1, LOW);
digitalWrite(IN2, LOW);

}
else if(req == "/btn/6")
{
Serial.write('g');
while(Serial.available() > 0)
{
unoData = Serial.readStringUntil('#');
client.println("Data");

}
while(ultra_state>0)

{
Serial.print("Distance = ");
Serial.print(checkdistance());
Serial.println("#");
Serial1.print("Distance = ");
Serial1.print(checkdistance());
Serial1.println("#");
int t_val1 = checkdistance();
client.print("Distance(cm) = ");
client.println(t_val1);
ultra_state = 0;

}
}
else if(req == "/btn/7")
{

(continues on next page)

5.41. Project 40WiFi Smart Home 257

keyestudio WiKi

(continued from previous page)

Serial.write('h');
client.println("turn off the ultrasonic");
ultra_state = 1;

}
else if(req == "/btn/8")
{
Serial.write('i');
while(Serial.available() > 0)
{
unoData = Serial.readStringUntil('#');
client.println(unoData);
}
while(temp_state>0)
{
if (xht.receive(dht)) {

Serial.print("Temperature = ");
Serial.print(dht[2],1);
Serial.println("#");
Serial1.print("Temperature = ");
Serial1.print(dht[2],1);
Serial1.println("#");
int t_val2 = dht[2];
client.print("Temperature(℃) = ");
client.println(t_val2);

}
temp_state = 0;

}
}
else if(req == "/btn/9")
{
Serial.write('j');
client.println("turn off the temperature");
temp_state = 1;

}
else if(req == "/btn/10")
{
Serial.write('k');
while(Serial.available() > 0)
{
unoData = Serial.readStringUntil('#');
client.println(unoData);

}
while(humidity_state > 0)
{
if (xht.receive(dht)) {
Serial.print("Humidity = ");
Serial.print(dht[0],1);
Serial.println("#");
Serial1.print("Humidity = ");
Serial1.print(dht[0],1);
Serial1.println("#");
int t_val3 = dht[0];

(continues on next page)

258 Chapter 5. Arduino Project

keyestudio WiKi

(continued from previous page)

client.print("Humidity(%) = ");
client.println(t_val3);

}
humidity_state = 0;

}
}
else if(req == "/btn/11")
{
Serial.write('l');
client.println("turn off the humidity");
humidity_state = 1;
}

//client.print(s);
client.stop();

}

int checkdistance() {
digitalWrite(14, LOW);
delayMicroseconds(2);
digitalWrite(14, HIGH);
delayMicroseconds(10);
digitalWrite(14, LOW);
int distance = pulseIn(27, HIGH) / 58;

delay(10);
return distance;

}
//**

Special attention: you need to change the user’s Wifi name and Wifi password in the experiment code to your own
Wifi name and Wifi password.

7. Project result

After making sure that the Code is modified correctly, external power supply and power on, and then compile and

upload the code to ESP32.Note: If uploading the code fails, you can press the Boot button on ESP32 after click ,

and release the Boot button
after the percentage of uploading progress appearsopen the serial monitor and set baud rate to 115200. In this way, the
serial port monitor prints the detected WiFi IP address,(If open the serial monitor and set the baud rate to 115200, the
information is not displayed, please press the RESET button of the ESP32)

5.41. Project 40WiFi Smart Home 259

keyestudio WiKi

Then open the WiFi APP and enter the detected WiFi IP address in the text box in front of the WiFi button (for example,
the IP address shownby the serial port monitor below :192.168.0.156), then click the WiFi button, “Hello from ESP32
at 192.168.0.156”is displayed in the text box next to the WiFi IP address, indicating that the APP is already connected
to WiFi.(WiFi IP address sometimes changes, if the original IP address doesn’t work, you need to re-check the WiFi IP
address)

260 Chapter 5. Arduino Project

keyestudio WiKi

After the APP has been connected to WiFi, the following operations will be performed:

1) Click button, the relay will be opened, the APP will

display and the indicator lights up on the mod-

ule. Click

media/5b9754cb6ec4f995c9eada1da89a8969.png

again, the relay will be closed, the APP will display

and the indicator on the module is off.

2) Click

media/c54f78d819d4e6a8310eaeb79ff66910.png

buttonthe servo rotates 180°the APP will display

media/c54f78d819d4e6a8310eaeb79ff66910.png

againthe APP will

display

media/dee12bee3866542bfe5d70a539f79f0b.png

the servo rotates 0°.

5.41. Project 40WiFi Smart Home 261

keyestudio WiKi

3) Click buttonthe motorwith small fan bladesrotatesthe APP will display

media/5490abf5b2f8a1d9cea3055da07c251c.png

againclose the motorthe APP will display

media/de6da02ede6d63344546173d36bf5371.png

4) Click

media/95bfbe879d2391e4e48dcae085abe5a6.png

buttonthe ultrasonic sensor detects the distance, put an object in front of the ultrasonic

sensor, the APP will display

media/e431e1b9c95bed37b053ae9617f93676.png

different distances show different numbers, the distance between

the object and the ultrasonic sensor is 6cmclick

media/95bfbe879d2391e4e48dcae085abe5a6.png

again, turn off the sensor, the APP will display

media/b1df35af68601022e54b7e575b0a07c7.png

.

5) Click

media/08c8a35841b31fa4b5327fb7b23a7af5.png

buttonthe temperature and humidity sensor measures the temperature in the environment,

the APP will display

media/0aafd0af43f80b692eca3d6732b551b2.png

different temperatures show different temperature valuesthe ambient tem-

262 Chapter 5. Arduino Project

keyestudio WiKi

perature is 30°C., click

media/08c8a35841b31fa4b5327fb7b23a7af5.png

again, turn off the sensorthe APP will display

media/82887a1385bc7411ecbdc41f60ebd450.png

.

6) Click

media/d8e3463ab2f644b3300cdeaa2a68e4c2.png

buttonthe temperature and humidity sensor measures the humidity in the environ-

ment,the APP will display different humiditys show different humiditys val-

ues, the ambient humidity is 55%click

media/d8e3463ab2f644b3300cdeaa2a68e4c2.png

againturn off the sensor, the APP will display

media/adc18d06e626af067286da9040c20252.png

.

5.41. Project 40WiFi Smart Home 263

keyestudio WiKi

264 Chapter 5. Arduino Project

CHAPTER

SIX

GETTING STARTED WITH PYTHON

Before starting building the projects, you need to make some preparation first. Do not skip this step as it provides
crucial information for installing.

6.1 1.Installing Thonny (Important)

Thonny is a free, open-source software platform with compact size, simple interface, simple operation and rich func-
tions, making it a Python IDE for beginners. In this tutorial, we use this IDE to develop ESP32 during the whole
process.

Thonny supports various operating system, including WindowsMac OSLinux.

6.1.1 (1) Downloading Thonny

Enter the official website of Thonny: https://thonny.org and download the latest version of Thonny.

Open-source code repositories of Thonny: https://github.com/thonny/thonny

Follow the instruction of official website to install Thonny or click the links below to download and install. (Select the
appropriate one based on your operating system.)

Oper-
ating
Sys-
tem

Download links/methods

MAC
OS

https://github.com/thonny/thonny/releases/download/v3.2.7/thonny-3.2.7.pkg

Win-
dows

https://github.com/thonny/thonny/releases/download/v3.2.7/thonny-3.2.7.exe

Linux The latest version:Binary bundle for PC (Thonny+Python): bash <(wget -O -
https://thonny.org/installer-for-linux)With pip: pip3 install thonnyDistro packages (may not be
the latest version):Debian, Rasbian, Ubuntu, Mint and others: sudo apt install thonnyFedora: sudo
dnf install thonny

265

https://thonny.org
https://github.com/thonny/thonny
https://github.com/thonny/thonny/releases/download/v3.2.7/thonny-3.2.7.pkg
https:/github.com/thonny/thonny/releases/download/v3.2.7/thonny-3.2.7.exe

keyestudio WiKi

6.1.2 (2) Install Thonny on Windows

The icon of Thonny after downloading is as below.

1. Double click“thonny-3.3.13.exe”the following dialog box will appear. I choose“ ”to

266 Chapter 6. Getting started with Python

keyestudio WiKi

operate, you can also select“ ” to operate.

2. If you’re not familiar with computer software installation, you can simply keep clicking “Next” until the instal-
lation completes.

6.1. 1.Installing Thonny (Important) 267

keyestudio WiKi

3. If you want to change Thonny’s installation path, you can click “Browse. . .” to modify it. After selecting instal-
lation path, click “OK”. If you do not want to change it, just click “Next”.

268 Chapter 6. Getting started with Python

keyestudio WiKi

4. Check “Create desktop icon” and then it will generate a shortcut on your desktop to facilitate you to open
Thonny later.

5. Click “Install” to install the software.

6.1. 1.Installing Thonny (Important) 269

keyestudio WiKi

6. During the installation, you only need to wait for completion, and you should not click “Cancel”, otherwise
Thonny will fail to be installed.

7. Once you see the interface as below, Thonny has been installed successfully. Click “Finish”.

270 Chapter 6. Getting started with Python

keyestudio WiKi

8. If you’ve check“Create desktop icon”during the installation process, you can see the below icon on your desktop.

6.2 2. Basic Configuration of Thonny

1. Click the desktop icon of Thonny and you can see the interface of it as follows, and we can also choose the
language and initial settings. Once set, click “Let’s Go!”

6.2. 2. Basic Configuration of Thonny 271

keyestudio WiKi

272 Chapter 6. Getting started with Python

keyestudio WiKi

2. Select“View”→“Files”and“Shell”.

6.2. 2. Basic Configuration of Thonny 273

keyestudio WiKi

274 Chapter 6. Getting started with Python

keyestudio WiKi

6.3 3.Installing CP2102 driver

ESP32 uses CP2102 to download codes. So before using it, we need to install CP2102 driver in our computers.

6.3.1 Windows System

Check whether CP2102 has been installed

(1). Connect your computer and ESP32 with a USB cable.

(2). Turn to the main interface of your computer, select “This PC” and right-click to select “Manage”.

(3). Click “Device Manager”, your computer has installed CP2102 driveryou can see “Silicon Labs CP210x USB to
UART Bridge (COMx)”

6.3. 3.Installing CP2102 driver 275

keyestudio WiKi

Installing CP2102 driver

(1) If you have not yet installed the CP2102 driver, you’ll see the following interface.

276 Chapter 6. Getting started with Python

keyestudio WiKi

(2) Click “CP2102USB to UART Bridge Controller”, and right-click to select “Update driver”.

6.3. 3.Installing CP2102 driver 277

keyestudio WiKi

(3) Click “Browse my computer for drivers ”.

278 Chapter 6. Getting started with Python

keyestudio WiKi

(4) Click “Browse. . . ” select CP210x_6.7.4 (Driver path2. Windows System\1. Python_Tutorial\1. Preparation for
Python(Windows)\CP2102 Driver File-Windows), Click “Next”.

6.3. 3.Installing CP2102 driver 279

keyestudio WiKi

(5) Wait for the CP2102 driver installation to be finished. When you see the following interface, which indicates that
the CP2102 driver has been installed to your computer. You can close the interface.

280 Chapter 6. Getting started with Python

keyestudio WiKi

(6) When ESP32 is connected to computer, the interface appears as follows.

6.3. 3.Installing CP2102 driver 281

keyestudio WiKi

6.3.2 MAC System

You can refer to the file Get started with Arduino in the folder to install the CP2102 driver. Path2. Windows System\2.
C_Tutorial\1. Preparation for C (Windows)

6.4 4.Burning Micropython Firmware (Important)

To run Python programs on ESP32, we need to burn a firmware to ESP32 first.

6.4.1 (1) Downloading Micropython firmware

Official website of microPythonhttp://micropython.org/

Webpage listing firmware of microPython for ESP32https://micropython.org/download/esp32/

282 Chapter 6. Getting started with Python

http://micropython.org/
https://micropython.org/download/esp32/

keyestudio WiKi

Firmware used in this tutorial is esp32-20210902-v1.17.bin
Click the following link to download directlyhttps://micropython.org/resources/firmware/esp32-20210902-v1.17.bin

This file is also provided in our folder“2. Windows System\1. Python_Tutorial\1. Preparation for
Python(Windows)\Python_Firmware”.

6.4. 4.Burning Micropython Firmware (Important) 283

https://micropython.org/resources/firmware/esp32-20220117-v1.18.bin

keyestudio WiKi

6.4.2 (2) Burning a Micropython Firmware

Connect your computer and ESP32 with a USB cable.

Make sure that the driver has been installed successfully and that it can recognize COM port correctly. Open device
manager and expand “Ports(COM&LPT)”.

Note: COM ports may be different on different computers

A. Open Thonnyclick “Run” and select “Select interpreter. . .”.

284 Chapter 6. Getting started with Python

keyestudio WiKi

B. Select “Micropython (ESP32)”, select “Silicon Labs CP210x USB to UART Bridge(COM3)”, and then click
“Install or update firmware”.

6.4. 4.Burning Micropython Firmware (Important) 285

keyestudio WiKi

C. The following dialog box pops up, Select “Silicon Labs CP210x USB to UART Bridge(COM3)” for “Port”, and
then click “Browse. . .”. Select the previous prepared microPython firmware “esp32-20210902-v1.17.bin”. Check
“Erase flash before installing” and “Flash mode”, then click “Install” to wait for the prompt of finishing installation.

Note: If you fail to install the firmware, press the Boot on the ESP32 mainboard and click “Install” again.

286 Chapter 6. Getting started with Python

keyestudio WiKi

6.4. 4.Burning Micropython Firmware (Important) 287

keyestudio WiKi

D. Wait for the installation to be done, then click“Close”and“OK”.

288 Chapter 6. Getting started with Python

keyestudio WiKi

6.4. 4.Burning Micropython Firmware (Important) 289

keyestudio WiKi

290 Chapter 6. Getting started with Python

keyestudio WiKi

E. Close all dialog boxes, turn to main interface and click “STOP”. As shown in the illustration below:

6.4. 4.Burning Micropython Firmware (Important) 291

keyestudio WiKi

F. So far, all the preparations have been made.

6.5 5.Test Code

Testing the Shell commander

Enter “print(‘hello world’)” in “Shell” and press Enter.

Running Online(Important)

ESP32 needs to be connected to a computer when it is run online. Users can use Thonny to writer and debug programs.

1. Open Thonny and click “Open. . .”.

292 Chapter 6. Getting started with Python

keyestudio WiKi

2. Click “This computer”on the newly pop-up window.

6.5. 5.Test Code 293

keyestudio WiKi

3. In the new dialog box, select “Project_01_HelloWorld.py” in “2. Windows System\1. Python_Tutorial\2.
Python Projects\Project 01Hello World” folder.

4. Click “Run current script”to execute the program and “Hello World” will be printed in“Shell”.

NoteWhen running online, if you press the Reset button of ESP32, user’s code will not be executed again. If you wish
to run the code automatically after resetting the code, please refer to the following Running Offline.

Running Offline(Important)

After ESP32 is reset, it runs the file boot.py in root directory first and then runs your code file, and finally it enters
“Shell”. Therefore, to make ESP32 execute user’s programs after resetting, we need to add a guiding program in
boot.py to execute user’s code.

1. Move the program folder “2. Windows System\1. Python_Tutorial\2. Python Projects” to disk(D) in advance
with the path of “D:/2. Python Projects”. Open “Thonny”.

294 Chapter 6. Getting started with Python

keyestudio WiKi

2. Expand “Project 00: Boot” in the “2. Python Projects” in the directory of disk(D), and double-click ”boot.py”,
which is provided by us to enable programs in“MicroPython device” to run offline.

3. If you want your written programs to run offline, you need to upload “boot.py” we provided and all your codes
to “MicroPython device” and press ESP32’s Reset button. Here we use programs Project 00 and Project 01 as
examples. Select “boot.py”, right-click to select “Upload to /”.

6.5. 5.Test Code 295

keyestudio WiKi

4. Similarly, upload“Project_01_HelloWorld.py” to“MicroPython device”.

5. Press ESP32’s Reset button and in the box of the “Shell” below, you can see the code is executed.

296 Chapter 6. Getting started with Python

keyestudio WiKi

6.6 6.Thonny Common operations

Upload the code to ESP32

For convenience, let’s take the opertation on “boot.py” as an example.

If we add “boot.py” to each code directory, every time when ESP32 restarts, if there is a “boot.py” in the root directory,
it will execute this code first.

6.6. 6.Thonny Common operations 297

keyestudio WiKi

Select “boot.py” in “Project 03LED Flashing”, right-click your mouse and select “Upload to /” to upload code to
ESP32’s root directory, select to click “OK”.

Downloading Code to Computer

Select “boot.py” in “MicroPython device”, right-click to select “Download to . . .” to download the code to your
computer.

298 Chapter 6. Getting started with Python

keyestudio WiKi

Delete files from ESP32 Root Directory

Select “boot.py” in “MicroPython device”, right-click it and select “Delete” to delete “boot.py” from ESP32’s root
directory.

Select “boot.py” in “Project 03LED Flashing”, right-click it and select “Move to Recycle Bin” to delete it from
“Project 03LED Flashing”.

6.6. 6.Thonny Common operations 299

keyestudio WiKi

Creating and Saving the code

Click “File” → “New” to create and write codes.

300 Chapter 6. Getting started with Python

keyestudio WiKi

Enter codes in the newly opened file. Here we use codes of “Project_03_LED_Flashing.py” as an example.

6.6. 6.Thonny Common operations 301

keyestudio WiKi

Click “Save”on the menu bar, you can save the codes either to your computer or to ESP32.

Select “MicroPython device”, enter “main.py” in the newly pop-up window and click “OK”.

You can see that the code has been uploaded to ESP32.

302 Chapter 6. Getting started with Python

keyestudio WiKi

Disconnect and reconnect USB cable, and then you can see that LED is on for 0.5 s and then off for 0.5s.

6.6. 6.Thonny Common operations 303

keyestudio WiKi

304 Chapter 6. Getting started with Python

CHAPTER

SEVEN

PYTHON PROJECT

Click on the link to enter the Thonny tutorial: Thonny Tutorial

7.1 Download code files

Click on the link to download the code file: Download Python Codes file

7.2 Project 01: Hello World

7.2.1 1. Introduction

For ESP32 beginners, we’ll start with some simple things. In this project, you just need an ESP32 mainboard, USB
cable and computer to complete “Hello World!” Project. It is not only a communication test for ESP32 mainboard and
computer, but also a primary project for ESP32.

7.2.2 2. Components

ESP32*1 USB cable*1

7.2.3 3. Wiring

In this project, we use a USB cable to connect the ESP32 to the computer.

305

keyestudio WiKi

7.2.4 4. Running code online

To run ESP32 online, you need to connect it to computer, which allows you to use Thonny to compile or debug programs.

Advantages
1) You can use Thonny to compile or debug programs.

2) Through the “Shell” window, you can read the error information and output results generated during the running
of the program and query related function information online to help improve the program.

Disadvantages
(1) To run ESP32 online, you have to be connected to a computer and run with Thonny.

(2) If ESP32 disconnects from computer, the program won’t run again when they reconnect to each other.

Basic Operation:

1) Open Thonnyand click “Open. . . ”.

(2) On the newly pop-up window, click“This computer”.

306 Chapter 7. Python Project

keyestudio WiKi

2In the new dialog box, select “Project_01_HelloWorld.py”, click “Open”.

Codes used in this tutorial are saved in ”2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

(3) Click “Run current script” to execute the program “Hello World!”, “Welcome Keyestudio”, which will be
printed in the “Shell” window.

7.2. Project 01: Hello World 307

keyestudio WiKi

Exit running online

When running online, click “Stop /Restart Backend” or press “Ctrl+C” to exit the program.

7.2.5 5. Project code

print("Hello World!")
print("Welcome Keyestudio")

7.3 Project 02: Turn on LED

7.3.1 1.Introduction

In this project, we will show you how to light up the LED. We use the ESP32’s digital pin to turn on the LED so that
the LED is lit up.

308 Chapter 7. Python Project

keyestudio WiKi

7.3.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

Red LED*1 220 Resistor*1 Jumper Wire*2

7.3.3 3.Component knowledge

1LED:

The LED is a semiconductor known as “light-emitting diode” ,which is an electronic device made from semiconducting
materials(silicon, selenium, germanium, etc.). It has an anode and a cathode, the short lead is cathode, which connects
to GND; the long lead is anode, which connects to3.3V or 5V.

7.3. Project 02: Turn on LED 309

keyestudio WiKi

2Five-color ring resistor

A resistor is an electronic component in a circuit that restricts or regulates the flow current flow. On the left is the
appearance of the resistor and on the right is the symbol for the resistance in the circuit . Its unit is(). 1 m= 1000 k1k=
1000.

We can use resistors to protect sensitive components, such as LED. The strength of the resistance is marked on the
body of the resistor with an electronic color code. Each color code represents a number, and you can refer to it in a
resistance card.

-Color 1 – 1st Digit.

-Color 2 – 2nd Digit.

-Color 3 – 3rd Digit.

-Color 4 – Multiplier.

-Color 5 – Tolerance.

310 Chapter 7. Python Project

keyestudio WiKi

In this kit, we provide three Five-color ring resistor with different resistance values. Take three Five-color ring resistor
as an example.

220 Resistor*10

10K Resistor*10

7.3. Project 02: Turn on LED 311

keyestudio WiKi

1K Resistor*10

In the same voltage, there will be less current and more resistance. The connection between current(I), voltage(V), and
resistance® can be expressed by the formula: I=U/R. In the figure below, if the voltage is 3V, the current through R1
is: I = U / R = 3 V / 10 K= 0.0003A= 0.3mA.

Don’t connect a low resistance directly to the two poles of the power supply. as this will cause excessive current to
damage the electronic components. Resistors do not have positive and negative poles.

312 Chapter 7. Python Project

keyestudio WiKi

3Breadboard

Breadboards are used to build and test circuits quickly before completing any circuit design. There are many holes in
the breadboard that can be inserted into circuit components such as integrated circuit board and resistors. A typical
breadboard is shown below

The breadboard has strips of metal , which run underneath the board and connect the holes on the top of the board. The
metal strips are laid out as shown below. Note that the top and bottom rows of holes are connected horizontallywhile
the remaining holes are connected vertically.

The first two rows (top) and the last two rows (bottom) of the breadboard are used for the positive pole (+) and negative
pole (-) of the power supply respectively. The conductive layout of the breadboard is shown in the figure below:

7.3. Project 02: Turn on LED 313

keyestudio WiKi

When we connect DIP (Dual In-line Packages) components, such as integrated circuits, microcontrollers, chips and so
on, we can see that a groove in the middle isolates the middle part, so the top and bottom of the groove is not connected.
DIP components can be connected as shown in the following diagram:

314 Chapter 7. Python Project

keyestudio WiKi

(4) Power Supply

The ESP32 needs 3.3V-5V power supply. In this project, we connected the ESP32 to the computer by using a USB
cable.

7.3. Project 02: Turn on LED 315

keyestudio WiKi

7.3.4 4.Wiring diagram

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correct, connect the ESP32 to your computer by using a USB cable.

Note: Be careful to avoid short circuit when connecting 3.3V and GND!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause perma-
nent damage to your hardware!

Note:

How to connect a LED

How to identify the 220 Five-color ring resistor

316 Chapter 7. Python Project

keyestudio WiKi

7.3.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Code running online:

Open “Thonny”click “This computer”→“D:”→“2. Python Projects”→“Project 02Turn On LED”.

7.3. Project 02: Turn on LED 317

keyestudio WiKi

Expand folder“Project 02Turn On LED”and click“Project_02_Turn_On_LED.py” to open it. As shown in the illustra-
tion below

from machine import Pin
import time

led = Pin(15, Pin.OUT) # create LED object from Pin 15, Set Pin 15 to output

led.value(1) # Set led turn on

318 Chapter 7. Python Project

keyestudio WiKi

Make sure the ESP32 has been connected to the computer. Click

media/27451c8a9c13e29d02bc0f5831cfaf1f.png

“Stop/Restart backend” and see
what will display in the“Shell” window.

Click “Run current script”, the code starts to be executed and the LED in the circuit lit up. Press “Ctrl+C” or

click “Stop/Restart backend” to exit the program.

7.3. Project 02: Turn on LED 319

keyestudio WiKi

Note: This is the code running online. If you disconnect USB cable and repower ESP32 or press its reset button, LED
is not bright and the following messages will be displayed in the “Shell” window of Thonny:

Code running offline (Upload the code to ESP32):

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

320 Chapter 7. Python Project

keyestudio WiKi

As shown below, right-click the file“Project_02_Turn_On_LED.py”select “Upload to /”to upload the code to ESP32.

Upload “boot.py” in the same way.

7.3. Project 02: Turn on LED 321

keyestudio WiKi

Press the reset button of ESP32 and you can see LED is ON .

Note: Codes here is run offline. If you want to stop running offline and enter “Shell”, just click “Stop/Restart
backend”in Thonny.

322 Chapter 7. Python Project

keyestudio WiKi

7.4 Project 03LED Flashing

7.4.1 1.Introduction

In this project, we will show you the LED flashing effect. We use the ESP32’s digital pin to turn on the LED and make
it flashing.

7.4.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

Red LED*1 220 Resistor*1 Jumper Wire*2

7.4.3 3.Wiring diagram

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correct, connect the ESP32 to your computer using a USB cable.

Note: Avoid any possible short circuits (especially connecting 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause perma-
nent damage to your hardware!

7.4. Project 03LED Flashing 323

keyestudio WiKi

Note:

How to connect a LED

How to identify the 220 Five-color ring resistor

324 Chapter 7. Python Project

keyestudio WiKi

7.4.4 4.Project code

Codes used in this tutorial are saved in “2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Code running online:

Open “Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 03LED Flashing”.

7.4. Project 03LED Flashing 325

keyestudio WiKi

Expand folder “Project 03LED Flashing” and click “Project_03_LED_Flashing.py” to open it. As shown in the illus-
tration below

from machine import Pin
import time

led = Pin(15, Pin.OUT) # create LED object from Pin 15, Set Pin 15 to output

try:
(continues on next page)

326 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

while True:
led.value(1) # Set led turn on
time.sleep(0.5) # Sleep 0.5s
led.value(0) # Set led turn off
time.sleep(0.5) # Sleep 0.5s

except:
pass

Make sure the ESP32 has been connected to the computer. Click “Stop/Restart backend” and see what will display
in the “Shell” window.

Click “Run current script”, the code starts to be executed and you can see the LED is ON for 0.5s and then OFF

for 0.5s, which repeats in an endless loop. Press“Ctrl+C”or click “Stop/Restart backend” to exit the program.

7.4. Project 03LED Flashing 327

keyestudio WiKi

Note: This is the code running online. If you disconnect USB cable and repower ESP32 or press its reset button, the
LED in the circuit stops flashing and the following messages will be displayed in the “Shell” window of Thonny:

328 Chapter 7. Python Project

keyestudio WiKi

Code running offlineUpload the code to ESP32

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

As shown below, right-click the file“Project_03_LED_Flashing.py”select “Upload to /”to upload the code to ESP32.

7.4. Project 03LED Flashing 329

keyestudio WiKi

Upload “boot.py” in the same way.

Press the reset button of ESP32 and you can see the LED is ON for 0.5 seconds and then OFF for 0.5 seconds, which
repeats in an endless loop.

330 Chapter 7. Python Project

keyestudio WiKi

NoteCodes here is run offline. If you want to stop running offline and enter“Shell”, just click “Stop/Restart back-
end”in Thonny.

7.5 Project 04: Breathing Led

7.5.1 1.Introduction

In previous studies, we know that LEDs have on/off state, so how to enter the intermediate state? How to output an
intermediate state to make the LED half bright? That’s what we’re going to learn.

Breathing light, that is, LED is turned from off to on gradually, and gradually from on to off, just like “breathing”. So,
how to control the brightness of a LED? We will use ESP32’s PWM to achieve this target.

7.5. Project 04: Breathing Led 331

keyestudio WiKi

7.5.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

Red LED*1 220 Resistor*1 Jumper Wire*2

7.5.3 3.Component knowledge

Analog & Digital:

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete time signal
is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A familiar example of
an Analog Signal would be how the temperature throughout the day is continuously changing and could not suddenly
change instantaneously from 0℃ to 10℃. However, Digital Signals can instantaneously change in value. This change
is expressed in numbers as 1 and 0 (the basis of binary code). Their differences can more easily be seen when compared
when graphed as below.

332 Chapter 7. Python Project

keyestudio WiKi

In practical application, we often use binary as the digital signal, that is a series of 0’s and 1’s. Since a binary signal
only has two values (0 or 1), it has great stability and reliability. Lastly, both analog and digital signals can be converted
into the other.

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits. Common
processors cannot directly output analog signals. PWM technology makes it very convenient to achieve this conversion
(translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high levels and
low levels, which alternately last for a while. The total time for each set of high levels and low levels is generally fixed,
which is called the period (Note: the reciprocal of the period is frequency). The time of high level outputs are generally
called “pulse width”, and the duty cycle is the percentage of the ratio of pulse duration, or pulse width (PW) to the total
period (T) of the waveform.

The longer the output of high levels last, the longer the duty cycle and the higher the corresponding voltage in the
analog signal will be. The following figures show how the analog signal voltages vary between 0V-3V3 (high level is
3V3) corresponding to the pulse width 0%-100%:

7.5. Project 04: Breathing Led 333

keyestudio WiKi

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this relationship, we
can use PWM to control the brightness of an LED or the speed of DC motor and so on. It is evident from the above
that PWM is not real analog, and the effective value of the voltage is equivalent to the corresponding analog. so, we
can control the output power of the LED and other output modules to achieve different effects.

ESP32 and PWM:

The ESP32 PWM controller has 8 independent channels, each of which can independently control frequency, duty
cycle, and even accuracy. Unlike traditional PWM pins, the PWM output pins of ESP32 are configurable and they can
be configured to PWM.

7.5.4 4.Wiring diagram

Note:
How to connect a LED

334 Chapter 7. Python Project

keyestudio WiKi

How to identify the 220 Five-color ring resistor

7.5.5 5. Project code

The design of this project makes the GP15 output PWM, and the pulse width gradually increases from 0% to 100%,
and then gradually decreases from 100% to 0%.

Codes used in this tutorial are saved in “2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

7.5. Project 04: Breathing Led 335

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 04Breathing Led”, and double left-click
“Project_04_Breathing_LED.py”.

import time
from machine import Pin,PWM

#The way that the ESP32 PWM pins output is different from traditionally controllers.
#It can change frequency and duty cycle by configuring PWM’s parameters at the␣
→˓initialization stage.
#Define GPIO15’s output frequency as 10000Hz and its duty cycle as 0, and assign them to␣
→˓PWM.
pwm =PWM(Pin(15,Pin.OUT),10000,0)

try:
while True:

#The range of duty cycle is 0-1023, so we use the first for loop to control PWM to␣
→˓change the duty
#cycle value,making PWM output 0% -100%; Use the second for loop to make PWM output 100%-
→˓0%.

for i in range(0,1023):
pwm.duty(i)
time.sleep_ms(1)

for i in range(0,1023):
pwm.duty(1023-i)
time.sleep_ms(1)

except:
#Each time PWM is used, the hardware Timer will be turned ON to cooperate it. Therefore,␣
→˓after each use of PWM,
#deinit() needs to be called to turned OFF the timer. Otherwise, the PWM may fail to␣
→˓work next time.

pwm.deinit()
(continues on next page)

336 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

7.5.6 6. Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the LED is turned from ON to OFF

and then back from OFF to ON gradually like breathing. Press “Ctrl+C” or click “Stop/Restart backend” to exit the
program.

7.5. Project 04: Breathing Led 337

keyestudio WiKi

7.6 Project 05Traffic Lights

7.6.1 1.Introduction

Traffic lights are closely related to people’s daily life, which generally show red, yellow, and green. Everyone should
obey the traffic rules, which can avoid many traffic accidents. In this project, we will use ESP32 and some LEDs (red,
green and yellow) to simulate the traffic lights.

338 Chapter 7. Python Project

keyestudio WiKi

7.6.2 2.Components

ESP32*1 Bread board*1 Red LED*1 Yellow LED*1

Green LED*1 USB Cable*1 220 Resistor*3 Jumper Wires

7.6.3 3. Wiring diagram

Note:
How to connect a LED

7.6. Project 05Traffic Lights 339

keyestudio WiKi

How to identify the 220 Five-color ring resistor

7.6.4 4. Project code

Codes used in this tutorial are saved in”2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 05Traffic Lights”. and double left-click
“Project_05_Traffic_Lights.py”.

340 Chapter 7. Python Project

keyestudio WiKi

from machine import Pin
import time

led_red = Pin(0, Pin.OUT) # create red led object from Pin 0, Set Pin 0 to output
led_yellow = Pin(2, Pin.OUT) # create yellow led object from Pin 2, Set Pin 2 to output
led_green = Pin(15, Pin.OUT) # create green led object from Pin 15, Set Pin 15 to output

while True:
led_red.value(1) # Set red led turn on
time.sleep(5) # Sleep 5s
led_red.value(0) # Set red led turn off
led_yellow.value(1)
time.sleep(0.5)
led_yellow.value(0)
time.sleep(0.5)
led_yellow.value(1)
time.sleep(0.5)
led_yellow.value(0)
time.sleep(0.5)
led_yellow.value(1)
time.sleep(0.5)
led_yellow.value(0)
time.sleep(0.5)
led_green.value(1)
time.sleep(5)
led_green.value(0)

7.6. Project 05Traffic Lights 341

keyestudio WiKi

7.6.5 5.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see are below:

First, the green light will be on for five seconds and then off;

Next, the yellow light blinks three times and then goes off;

Then, the red light goes on for five seconds and then goes off;

Repeat steps 1 to 3 above.

Press “Ctrl+C” or click “Stop/Restart backend” to exit the program.

342 Chapter 7. Python Project

keyestudio WiKi

7.7 Project 06: RGB LED

7.7.1 1.Introduction

RGB is composed of three colors (red, green and blue),which can emit different colors of light by mixing these three
basic colors.

In this project, we will introduce the RGB and show you how to use ESP32 to control the RGB to emit different color
light. RGB is pretty basic, but it’s also a great way to learn the fundamentals of electronics and coding.

7.7. Project 06: RGB LED 343

keyestudio WiKi

7.7.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

RGB LED*1 220 Resistor*3 Jumper Wires

7.7.3 3. Component knowledge

Most monitors adopt the RGB color standard, and all colors on a computer screen are a mixture of red, green and blue
in varying proportions.

This RGB LED has 4 pins, each color (red, green, blue) and a common cathode,To change its brightness, we can use
the PWM of the ESP32 pins, which can give different duty cycle signals to the RGB to produce different colors of light.

If we use three 10-bit PWM to control the RGB, in theory, we can create 2 10*210*210 = 1,073,741,824 (1 billion)
colors through different combinations.

344 Chapter 7. Python Project

keyestudio WiKi

7.7.4 4.Wiring diagram

Note:
How to connect a LED

How to identify the 220 Five-color ring resistor

7.7. Project 06: RGB LED 345

keyestudio WiKi

7.7.5 5.Project code

Codes used in this tutorial are saved in”2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”, click “This computer” → “D:” → “2. Python Projects” → “Project 06RGB LED”, and double left-
click “Project_06_RGB_LED.py”.

346 Chapter 7. Python Project

keyestudio WiKi

import Pin, PWM and Random function modules.
from machine import Pin, PWM
from random import randint
import time

#Configure ouput mode of GPIO15, GPIO2 and GPIO0 as PWM output and PWM frequency as␣
→˓10000Hz.
pins = [0, 2, 15]

pwm0 = PWM(Pin(pins[0]),10000)
pwm1 = PWM(Pin(pins[1]),10000)
pwm2 = PWM(Pin(pins[2]),10000)

#define a function to set the color of RGBLED.
def setColor(r, g, b):

pwm0.duty(1023-r)
pwm1.duty(1023-g)
pwm2.duty(1023-b)

try:
while True:

red = randint(0, 1023)
green = randint(0, 1023)
blue = randint(0, 1023)
setColor(red, green, blue)
time.sleep_ms(200)

except:
pwm0.deinit()
pwm1.deinit()
pwm2.deinit()

7.7. Project 06: RGB LED 347

keyestudio WiKi

7.7.6 Project result

Make sure the ESP32 has been connected to the computer, click

media/27451c8a9c13e29d02bc0f5831cfaf1f.png

“Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that RGB begins to display random colors.

Press “Ctrl+C” or click “Stop/Restart backend” to exit the program.

348 Chapter 7. Python Project

keyestudio WiKi

7.8 Project 07: Flowing Water Light

7.8.1 1.Introduction

In our daily life, we can see many billboards composed of different colors of LED. They constantly change the light
(like water) to attract customers’ attention. In this project, we will use ESP32 to control 10 leds to achieve the effect of
flowing water.

7.8.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

Red LED*10 220 Resistor*10 Jumper Wires

7.8. Project 07: Flowing Water Light 349

keyestudio WiKi

7.8.3 3.Wiring diagram :

Note:
How to connect a LED

How to identify the 220 Five-color ring resistor

350 Chapter 7. Python Project

keyestudio WiKi

7.8.4 4.Project code

This project is designed to make a flowing water lamp. Which are these actions: First turn LED #1 ON, then turn it
OFF. Then turn LED #2 ON, and then turn it OFF. . . and repeat the same to all 10 LEDs until the last LED is turns
OFF. This process is repeated to achieve the “movements” of flowing water.

Codes used in this tutorial are saved in”2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 07Flowing Water Light”, and double
left-click “Project_07_Flowing_Water_Light.py”.

7.8. Project 07: Flowing Water Light 351

keyestudio WiKi

from machine import Pin
import time

#Use an array to define 10 GPIO ports connected to LED Bar Graph for easier operation.
pins = [22, 21, 19, 18, 17, 16, 4, 0, 2, 15]
#Use two for loops to turn on LEDs separately from left to right and then back from␣
→˓right to left
def showLed():

for pin in pins:
print(pin)
led = Pin(pin, Pin.OUT)
led.value(1)
time.sleep_ms(100)
led.value(0)
time.sleep_ms(100)

for pin in reversed(pins):
print(pin)
led = Pin(pin, Pin.OUT)
led.value(1)
time.sleep_ms(100)
led.value(0)
time.sleep_ms(100)

while True:
showLed()

352 Chapter 7. Python Project

keyestudio WiKi

7.8.5 5. Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that 10 LEDs will light up from left to

right and then back from right to left. Press“Ctrl+C” or click “Stop/Restart backend” to exit the program.

7.8. Project 07: Flowing Water Light 353

keyestudio WiKi

7.9 Project 081-Digit Digital Tube

7.9.1 1.Introduction

A 1-Digit 7-Segment Display is an electronic display device that displays decimal numbers. It is widely used in digital
clocks, electronic meters, basic calculators and other electronic devices that display digital information. Eventhough
they may not look modern enough, they are an alternative to more complex dot matrix displays and are easy to use in
limited light conditions and strong sunlight. In this project, we will use ESP32 to control 1-Digit 7-segment display
displays numbers.

7.9.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

1-Digit 7-Segment Display*1 220 Resistor*8 Jumper Wires

354 Chapter 7. Python Project

keyestudio WiKi

7.9.3 3. Component knowledge

1-Digit 7-Segment Display principle:
Digital tube display is a semiconductor light emitting device,its basic unit is a light-emitting diode (LED). Thedigital
tube display can be divided into 7-segment display and 8-segment display according to the number of segments. The
8-segment display has one more LED unit than the 7-segment display (used for decimal point display). Each segment
of the 7-segment display is a separate LED. According to the connection mode of the LED unit, the digital tube can be
divided into a common anode digital tube and a common cathode digital tube.

In the common cathode 7-segment display, all the cathodes (or negative electrodes) of the segmented LEDs are con-
nected together, so you should connect the common cathode to GND. To light up a segmented LED, you can set its
associated pin to“HIGH”.

In the common anode 7-segment display, the LED anodes (positive electrodes) of all segments are connected together,
so you should connect the common anode to“+5V”. To light up a segmented LED, you can set its associated pin
to“LOW”.

7.9. Project 081-Digit Digital Tube 355

keyestudio WiKi

Each part of the digital tube is composed of an LED. So when you use it, you also need to use a current limiting resistor.
Otherwise, the LED will be damaged. In this experiment, we use an ordinary common cathode one-digit digital tube.
As we mentioned above, you should connect the common cathode to GND. To light up a segmented LED, you can set
its associated pin to“HIGH”.

7.9.4 4.Wiring diagram

Note: The direction of the 7-segment display inserted into the breadboard is consistent with the wiring diagram, with
one more point in the lower right corner.

356 Chapter 7. Python Project

keyestudio WiKi

7.9. Project 081-Digit Digital Tube 357

keyestudio WiKi

7.9.5 5.Project code

The digital display is divided into 7 segments, and the decimal point display is divided into 1 segment. When certain
numbers are displayed, the corresponding segment will be lit. For example, when the number 1 is displayed, segments
b and c will be turned on.

Codes used in this tutorial are saved in ”2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 081-Digit Digital Tube”, and double
left-click “Project_08_One_Digit_Digital_Tube.py”.

from machine import Pin
import time

a = Pin(16, Pin.OUT)
b = Pin(4, Pin.OUT)

(continues on next page)

358 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

c = Pin(5, Pin.OUT)
d = Pin(18, Pin.OUT)
e = Pin(19, Pin.OUT)
f = Pin(22, Pin.OUT)
g = Pin(23, Pin.OUT)
dp = Pin(17, Pin.OUT)

pins = [Pin(id,Pin.OUT) for id in [16, 4, 5, 18, 19, 22, 23, 17]]

def show(code):
for i in range(0, 8):

pins[i].value(~code & 1)
code = code >> 1

#Select code from 0 to 9
mask_digits = [0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8,0x80, 0x90]
for code in reversed(mask_digits):

show(code)
time.sleep(1)

7.9.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

Click “Run current script”, the code starts to be executed and you’ll see that the 1-Digit 7-Segment Display will

display numbers from 9 to 0. Press “Ctrl+C” or click “Stop/Restart backend” to exit the program.

7.9. Project 081-Digit Digital Tube 359

keyestudio WiKi

7.10 Project 094-Digit Digital Tube

7.10.1 1.Introduction

A 4-digit 7-segment display is a very practical display device and it is used for devices such as electronic clocksscore
counters and the number of people in the park. Because of the low price, easy to use, more and more projects will use
4 Digit 7-segment display. In this project, we use ESP32 control 4-digit 7-segment display to display four digits.

360 Chapter 7. Python Project

keyestudio WiKi

7.10.2 2.Components

ESP32*1 Breadboard*1

4-digit 7-segment display Module*1 M-F Dupont Wires

7.10.3 3.Component knowledge

TM1650 **4-digit 7-segment display**It is a 12-pin 4-digit 7-segment display module with clock dots. The driver
chip is TM1650 which only needs 2 signal lines to enable the microcontroller to control the 4-digit 7-segment display.
The control interface level can be 5V or 3.3V.

Specifications of 4-bit 7-segment display module:
Working voltage: DC 3.3V-5V

Maximum current: 100MA

Maximum power: 0.5W

Schematic diagram of 4-digit 7-segment display module:

7.10. Project 094-Digit Digital Tube 361

keyestudio WiKi

7.10.4 4.Wiring diagram

7.10.5 5. Project code

Codes used in this tutorial are saved in”2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

362 Chapter 7. Python Project

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 094-Digit Digital Tube”. and then dou-
ble left-click “Project_09_Four_Digit_Digital_Tube.py”.

from machine import Pin
import time

definitions for TM1650
ADDR_DIS = 0x48 #mode command
ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST = 0
BRIGHT_TYPICAL = 2
BRIGHTEST = 7

on = 1
off = 0

number:0~9
NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6c,0x6e]
DIG = [0x6e,0x6c,0x6a,0x68]
DOT = [0,0,0,0]

clkPin = 22
dioPin = 21
clk = Pin(clkPin, Pin.OUT)
dio = Pin(dioPin, Pin.OUT)

DisplayCommand = 0

(continues on next page)

7.10. Project 094-Digit Digital Tube 363

keyestudio WiKi

(continued from previous page)

def writeByte(wr_data):
global clk,dio
for i in range(8):

if(wr_data & 0x80 == 0x80):
dio.value(1)

else:
dio.value(0)

clk.value(0)
time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr_data <<= 1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)
dio.value(0)
return

def ack():
global clk,dio
dy = 0
clk.value(0)
time.sleep(0.0001)
dio = Pin(dioPin, Pin.IN)
while(dio.value() == 1):

time.sleep(0.0001)
dy += 1
if(dy>5000):

break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, Pin.OUT)
return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
time.sleep(0.0001)
dio.value(1)
return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):

return
(continues on next page)

364 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)
else:

writeByte(NUM[num])
ack()
stop()
return

def clearBit(bit):
if(bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()
return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)
return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)
return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff
return

def displayDot(bit, OnOff):
if(bit > 4):

(continues on next page)

7.10. Project 094-Digit Digital Tube 365

keyestudio WiKi

(continued from previous page)

return
if(OnOff == 1):

DOT[bit-1] = 1;
else:

DOT[bit-1] = 0;
return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):

clearBit(_)
return

def ShowNum(num): #0~9999
displayBit(1,num%10)
if(num < 10):

clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
clearBit(4)

if(num > 999 and num < 10000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

while True:
#displayDot(1,on) # on or off, DigitalTube.Display(bit,number); bit=1---4 ␣

→˓number=0---9
for i in range(0,9999):

ShowNum(i)
time.sleep(0.01)

366 Chapter 7. Python Project

keyestudio WiKi

7.10.6 6. Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that 4-digit 7-segment display displays

digitsthe number increments by one and repeat these actions in an infinite loop. Press “Ctrl+C” or click “Stop/Restart
backend” to exit the program.

7.10. Project 094-Digit Digital Tube 367

keyestudio WiKi

7.11 Project 108×8 Dot-matrix Display

7.11.1 1.Introduction

Dot matrix display is an electronic digital display device that can display information on machine, clocks, public trans-
port departure indicators and many other devices. In this project, we will use ESP32 control 8x8 LED dot matrix to
display patterns.

7.11.2 2.Components

ESP32*1 Breadboard*1

8*8 dot matrix module*1 M-F Dupont Wires USB Cable*1

7.11.3 3.Component knowledge

8*8 dot matrix module
The 8*8 dot matrix is composed of 64 LEDs, and each LED is placed at the intersection of a row and a column. When
using the single chip microcomputer to drive an 8*8 dot matrix, we need 16 digital ports in total, which greatly wastes
the data of the single chip microcomputer.

To this end, we specially designed this module, using the HT16K33 chip to drive an 8*8 dot matrix, and only need to
use the I2C communication port of the MCU to control the 8*8 dot matrix, which greatly saving the MCU resources.

Specifications of 8*8 dot matrix module
• Working voltage: DC 5V

• Current: 200MA

• Maximum power: 1W

Schematic diagram of 8*8 dot matrix module

368 Chapter 7. Python Project

keyestudio WiKi

Some modules have three DIP switches that you can toggle at will. These switches are used to set the I2C communi-
cation address, the setting method is as follows. The module has fixed the communication address. A0, A1 and A2 are
connected to GND, and the address is 0x70.

7.11. Project 108×8 Dot-matrix Display 369

keyestudio WiKi

7.11.4 4.Wiring diagram

370 Chapter 7. Python Project

keyestudio WiKi

7.11.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 108×8 Dot-matrix Display”.

Select “ht16k33matrix.py” and “ht16k33.py”, right-click your mouse to select “Upload to /”, wait
for “ht16k33matrix.py” and “ht16k33.py” to be uploaded to ESP32, and then double left-click
“Project_10_8×8_Dot_Matrix_Display.py”.

7.11. Project 108×8 Dot-matrix Display 371

keyestudio WiKi

IMPORTS
import utime as time
from machine import I2C, Pin, RTC
from ht16k33matrix import HT16K33Matrix

CONSTANTS
DELAY = 0.01
PAUSE = 3

(continues on next page)

372 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

START
if __name__ == '__main__':

i2c = I2C(scl=Pin(22), sda=Pin(21))
display = HT16K33Matrix(i2c)
display.set_brightness(2)

Draw a custom icon on the LED
icon = b"\x00\x66\x00\x00\x18\x42\x3c\x00"
display.set_icon(icon).draw()
Rotate the icon
display.set_angle(0).draw()
time.sleep(PAUSE)

7.11.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the 8*8 dot matrix displays“Smiling

face” pattern. Press“Ctrl+C” or click “Stop/Restart backend”to exit the program.

7.11. Project 108×8 Dot-matrix Display 373

keyestudio WiKi

7.12 Project 1174HC595N Control 8 LEDs

7.12.1 1.Introduction

In previous projects, we learned how to light up an LED. With only 32 IO ports on ESP32, how do we light up a lot
of leds? Sometimes it is possible to run out of pins on the ESP32, and you need to extend it with the shift register.You
can use the 74HC595N chip to control 8 outputs at a time, taking up only a few pins on your microcontroller.

In addition, you can also connect multiple registers together to further expand the output. In this project, we will use
ESP32, 74HC595 chip and LED to make a flowing water light to understand the function of the 74HC595 chip.

374 Chapter 7. Python Project

keyestudio WiKi

7.12.2 2.Components

ESP32*1 Breadboard*1 74HC595N chip*1 Jumper
Wires

220Resistor*8 Red LED*8 USB Cable*1

7.12.3 3.Component knowledge

74HC595N Chip:
The 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert the serial data of one
byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly.

With this characteristic, the 74HC595 chip can be used to expand the IO ports of an ESP32. At least 3 ports are required
to control the 8 ports of the 74HC595 chip.

7.12. Project 1174HC595N Control 8 LEDs 375

keyestudio WiKi

The ports of the 74HC595 chip are described as follows

PIN FUNCTION
Pin 13–OE Enable output, When this pin is in high level, Q0-Q7 is in high resistance state. When this pin is

in low level, Q0-Q7 is in output mode.
Pin 14—SI Serial data Input, only enter one bit at a time, so you can enter eight consecutive times to form one

byte.
Pin
10—SCLR

Remove shift register: When this pin is in low level, the content in shift register will be cleared.In
this experiment, we connect VCC to maintain a high level.

Pin 11—SCK Serial shift clock: when its electrical level is rising, serial data input register will do a shift.
Pin 12—RCK Parallel Update Output: when its electrical level is rising, it will update the parallel data output. In

this case, the data is output from ports Q0 to Q7 in parallel
Pin 9—SQH Serial data output: it can be connected to more 74HC595 in series.
Q0–Q7(Pin
15Pin 1-7)

Parallel data output, can directly control the 8 segments of the digital tube.

7.12.4 4. Wiring diagram

Note: Note the orientation in which the 74HC595N chip is inserted.

376 Chapter 7. Python Project

keyestudio WiKi

7.12.5 5. Project code

Codes used in this tutorial are saved in “2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 1174HC595N Control 8 LEDs”.

Select“my74HC595.py”, right click your mouse to select“Upload to /”wait for“my74HC595.py”to be uploaded to
ESP32, and then double left-click “Project_11_74HC595N_Controls_8_LEDs.py”.

7.12. Project 1174HC595N Control 8 LEDs 377

keyestudio WiKi

#Import time and my74HC595 modules.
from my74HC595 import Chip74HC595
import time

#Create a Chip74HC595 object and configure pins
chip = Chip74HC595(14, 12, 13)
ESP32-14: 74HC595-DS(14)
ESP32-12: 74HC595-STCP(12)
ESP32-13: 74HC595-SHCP(11)

(continues on next page)

378 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

#The first for loop makes LED Bar display separately from left to right
#while the second for loop make it display separately from right to left.
while True:

x = 0x01
for count in range(8):

chip.shiftOut(1, x)
x = x<<1;
time.sleep_ms(300)

x = 0x01
for count in range(8):

chip.shiftOut(0, x)
x = x<<1
time.sleep_ms(300)

7.12.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

Click “Run current script”, the code starts to be executed and you’ll see that the 8 LEDs start flashing in flowing

water mode. Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

7.12. Project 1174HC595N Control 8 LEDs 379

keyestudio WiKi

7.13 Project 12Active Buzzer

7.13.1 1.Introduction

Active buzzer is a sound component that is widely used as a sound component for computersprintersalarmselectronic
toys and phonestimers etc. It has an internal vibration source, just by connecting to a 5V power supply, it can continu-
ously buzz. In this project, we will use ESP32 to control the active buzzer to beep.

7.13.2 2.Components

ESP32*1 Breadboard*1 Active buzzer*1

NPN transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

380 Chapter 7. Python Project

keyestudio WiKi

7.13.3 3. Component knowledge

Active buzzer:
Active buzzer inside has a simple oscillator circuit, which can convert constant direct current into a certain frequency
pulse signal. Once active buzzer receives a high level, it will produce sound. Passive buzzer is an internal without
vibration source integrated electronic buzzer, it must be driven by 2k to 5k square wave, rather than a DC signal.

The two buzzers are very similar in appearance, but one buzzer with a green circuit board is a passive buzzer, while the
other buzzer with black tape is an active buzzer. Passive buzzers don’t have positive polarity, but active buzzers have.
As shown below:

Transistor:

Because the buzzer requires such large current that GPIO of ESP32 output capability cannot meet the requirement, a
transistor of NPN type is needed here to amplify the current.

Transistor, the full name: semiconductor transistor, is a semiconductor device that controls current. Transistorcan be
used to amplify weak signal, or works as a switch. It has three electrodes(PINs): base (b), collector © and emitter (e).

When there is current passing between “be”, “ce” will allow several-fold current (transistor magnification) pass, at this
point, transistor works in the amplifying area. When current between “be” exceeds a certain value, “ce” will not allow

7.13. Project 12Active Buzzer 381

keyestudio WiKi

current to increase any longer, at this point, transistor works in the saturation area. Transistor has two types as shown
below: PNP and NPN,

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

Based on the transistor’s characteristics, it is often used as a switch in digital circuits. As micro-controller’s capacity
to output current is very weak, we will use transistor to amplify current and drive large-current components.

When using NPN transistor to drive buzzer, we often adopt the following method. If GPIO outputs high level, current
will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs low level, no current
flows through R1, the transistor will not be conducted, and buzzer will not sound.

When using PNP transistor to drive buzzer, we often adopt the following method. If GPIO outputs low level, current
will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs high level, no
current flows through R1, the transistor will not be conducted, and buzzer will not sound.

382 Chapter 7. Python Project

keyestudio WiKi

7.13.4 4.Wiring diagram

Note: The buzzer power supply in this circuit is 5V. On a 3.3V power supply, the buzzer can work, but will reduce the
loudness.

7.13.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

7.13. Project 12Active Buzzer 383

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 12Active Buzzer”, and then double left-
click “Project_12_Active_Buzzer.py”.

from machine import Pin
import time

buzzer = Pin(15, Pin.OUT) # create buzzer object from Pin 15, Set Pin 15 to output

try:
while True:

buzzer.value(1) # Set buzzer turn on
time.sleep(0.5) # Sleep 0.5s
buzzer.value(0) # Set buzzer turn off
time.sleep(0.5) # Sleep 0.5s

except:
pass

7.13.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

384 Chapter 7. Python Project

keyestudio WiKi

Click “Run current script”, the code starts to be executed and you’ll see that the active buzzer beeps. Press “Ctrl+C”

or click “Stop/Restart backend” to exit the program.

7.13. Project 12Active Buzzer 385

keyestudio WiKi

7.14 Project 13Passive Buzzer

7.14.1 1.Introduction:

In a previous project, we studied an active buzzer, which can only make a sound and may make you feel very
monotonous. In this project, we will learn a passive buzzer and use the ESP32 control it to work. Unlike the active
buzzer, the passive buzzer can emit sounds of different frequencies.

7.14.2 2.Components

ESP32*1 Breadboard*1 Passive Buzzer *1

NPN transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

7.14.3 3.Component knowledge

Passive buzzer:
A passive buzzer is an integrated electronic buzzer with no internal vibration source and it has to be driven by 2K-5K
square waves, not DC signals.

The two buzzers are very similar in appearance, but one buzzer with a green circuit board is a passive buzzer and the
other buzzer with black tape is an active buzzer. Passive buzzers cannot distinguish between positive polarity while
active buzzers can.

386 Chapter 7. Python Project

keyestudio WiKi

Transistor: Please refer to Project 12.

7.14.4 4.Wiring diagram:

7.14.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

7.14. Project 13Passive Buzzer 387

keyestudio WiKi

Open “Thonny”, click “This computer”→“D:”→“2. Python Projects”→“Project 13Passive Buzzer”, and then double
left-click “Project_13_Passive_Buzzer.py”.

from machine import Pin
import time

#Initialize the passive buzzer
buzzer = Pin(15,Pin.OUT)

#Simulate two different frequencies
while True:

#Output 500HZ frequency sound
for i in range(80):

buzzer.value(1)
time.sleep(0.001)
buzzer.value(0)

(continues on next page)

388 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

time.sleep(0.001)
#Output 250HZ frequency sound
for i in range(100):

buzzer.value(1)
time.sleep(0.002)
buzzer.value(0)
time.sleep(0.002)

7.14.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

Click “Run current script”, the code starts to be executed and you’ll see that the passive buzzer sounds alarm. Press

“Ctrl+C” or click “Stop/Restart backend”to exit the program.

7.14. Project 13Passive Buzzer 389

keyestudio WiKi

7.15 Project 14: Mini Table Lamp

7.15.1 1.Introduction

Do you know that the ESP32 can light up an LED when you press a button? In this project, we will use ESP32, a button
switch and an LED to make a mini table lamp.

7.15.2 2.Components

ESP32*1 Breadboard*1 Button*1 10K Resistor*1

Red LED*1 220 Resistor*1 USB Cable*1 Jumper Wires Button Cap*1

390 Chapter 7. Python Project

keyestudio WiKi

7.15.3 3. Component knowledge

Button:
A button can control the circuit on and off, the button is plugged into a circuit, the circuit is disconnected when the
button is not pressed. The circuit works when you press the button, but breaks again when you release it.

Why does it only work when you press it? It starts from the internal structure of the button, which don’t allow current
to travel from one end of the button to the other before it is pressed; When pressed, a metal strip inside the button
connects the two sides to allow electricity to pass through.

The internal structure of the button is shown in the figure .

Before the button is pressed, 1 and 2 are on, 3 and 4 are also on, but 1, 3 or 1, 4 or 2, 3 or 2, 4 are off (not working).
Only when the button is pressed, 1, 3 or 1, 4 or 2, 3 or 2, 4 are on.

The button switch is one of the most commonly used components in circuit design.

Schematic diagram of the button:

What is button shake?
We think of the switch circuit as “press the button and turn it on immediately”, “press it again and turn it off immedi-
ately”. In fact, this is not the case.

7.15. Project 14: Mini Table Lamp 391

keyestudio WiKi

The button usually uses a mechanical elastic switch, and the mechanical elastic switch will produce a series of shake
due to the elastic action at the moment when the mechanical contact is opened and closed (usually about 10ms). As
a result, the button switch will not immediately and stably turn on the circuit when it is closed, and it will not be
completely and instantaneously disconnected when it is turned off.

How to eliminate the shake?
There are two common methods, namely fix shake in the software and hardware. We only discuss the shake removal
in the software.

We already know that the shake time generated by elasticity is about 10ms, and the delay command can be used to
delay the execution time of the command to achieve the effect of shake removal.

Therefore, we delay 0.02s in the code to achieve the key anti-shake function.

392 Chapter 7. Python Project

keyestudio WiKi

7.15.4 4.Wiring Diagram

Note:
Connect the LED

220 5-band resistor

7.15. Project 14: Mini Table Lamp 393

keyestudio WiKi

10K 5-band resistor

7.15.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 14Mini Table Lamp”, and then double
left-click “Project_14_Mini_Table_Lamp.py”.

394 Chapter 7. Python Project

keyestudio WiKi

from machine import Pin
import time

led = Pin(4, Pin.OUT) # create LED object from Pin 4,Set Pin 4 to output ␣
→˓

button = Pin(15, Pin.IN, Pin.PULL_UP) #Create button object from Pin15,Set GP15 to input

#Customize a function and name it reverseGPIO(),which reverses the output level of the␣
→˓LED
def reverseGPIO():

if led.value():
led.value(0) #Set led turn off

else:
led.value(1) #Set led turn on

try:
while True:

if not button.value():
time.sleep_ms(20)
if not button.value():

reverseGPIO()
while not button.value():

time.sleep_ms(20)
except:

pass

7.15. Project 14: Mini Table Lamp 395

keyestudio WiKi

7.15.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that press the push button switch, the LED
turns on; When it is released, the LED is still on.

Press it again, and the LED turns off. When it is released, the LED stays off. Doesn’t it look like a mini table lamp?

Press “Ctrl+C” or click “Stop/Restart backend” to exit the program.

396 Chapter 7. Python Project

keyestudio WiKi

7.16 Project 15Tilt and LED

7.16.1 1.Introduction

The ancients without electronic clock, so the hourglass are invented to measure time. The hourglass has a large capacity
on both sides, and which is filled with fine sand on one side. What’s more, there is a small channel in the middle, which
can make the hourglass stand upright , the side with fine sand is on the top.

Due to the effect of gravity,the fine sand will flow down through the channel to the other side of the hourglass. When
the sand reaches the bottom, turn it upside down and record the number of times it has gone through the hourglass,
therefore, the next day we can know the approximate time of the day by it. In this project, we will use ESP32 to control
the tilt switch and LED lights to simulate an hourglass and make an electronic hourglass.

7.16.2 2.Components

ESP32*1 Tilt Switch*1 Red LED*4 10K Resistor*1

Breadboard*1 220 Resistor*4 USB Cable*1 Jumper Wires

7.16.3 3.Component knowledge

Tilt switch is also called digital switch. Inside is a metal ball that can roll. The principle of rolling the metal ball to
contact with the conductive plate at the bottom, which is used to control the on and off of the circuit. When it is a rolling
ball tilt sensing switch with single directional trigger, the tilt sensor is tilted toward the trigger end (two gold-plated pin
ends), the tilt switch is in a closed circuit and the voltage at the analog port is about 5V(binary number is 1023),

In this way, the LED will light up. When the tilting switch is in horizontal position or tilting to the other end, the tilting
switch is in open state the voltage of the analog port is about 0V (binary number is 0), the LED will turn off. In the
program, we judge the state of the switch based on whether the voltage value of the analog port is greater than 2.5V
(binary number is 512).

The internal structure of the tilt switch is used here to illustrate how it works, as shown below:

7.16. Project 15Tilt and LED 397

keyestudio WiKi

7.16.4 4. Wiring Diagram

Note:
How to connect the LED

398 Chapter 7. Python Project

keyestudio WiKi

How to identify the 220 5-band resistor and 10K 5-band resistor

7.16. Project 15Tilt and LED 399

keyestudio WiKi

7.16.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 15Tilt And LED”, and then double left-
click “Project_15_Tilt_And_LED.py”.

from machine import Pin
import time

led1 = Pin(16, Pin.OUT) # create LED object from Pin 2,Set Pin 2 to output
led2 = Pin(17, Pin.OUT) # create LED object from Pin 0,Set Pin 0 to output
led3 = Pin(18, Pin.OUT) # create LED object from Pin 4,Set Pin 4 to output
led4 = Pin(19, Pin.OUT) # create LED object from Pin 16,Set Pin 16 to output
Tilt_Sensor = Pin(15,Pin.IN) #Create tilt object from Pin15,Set GP15 to input

(continues on next page)

400 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

while True:
if(Tilt_Sensor.value() == 0) : #when the value of tilt sensor is 0

led1.value(1) # led1 turn on
time.sleep_ms(200)#delay
led2.value(1) # led2 turn on
time.sleep_ms(200)#delay
led3.value(1) # led3 turn on
time.sleep_ms(200)#delay
led4.value(1) # led4 turn on
time.sleep_ms(200)#delay

else : #when the value of tilt sensor is 1
led4.value(0) # led4 turn off
time.sleep_ms(200)#delay
led3.value(0) # led3 turn off
time.sleep_ms(200)#delay
led2.value(0) # led2 turn off
time.sleep_ms(200)#delay
led1.value(0) # led1 turn off
time.sleep_ms(200)#delay

7.16.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that when you tilt the breadboard to an
angle, the LEDs will light up one by one.

When you turn the breadboard to the original angle, the LEDs will turn off one by one. Like the hourglass, the sand
will leak out over time.

7.16. Project 15Tilt and LED 401

keyestudio WiKi

Press“Ctrl+C”or click “Stop/Restart backend” to exit the program.

7.17 Project 16Burglar Alarm

7.17.1 1.Introduction

The human body infrared sensor measures the thermal infrared (IR) light emitted by moving objects. The sensor can
detect the movement of peopleanimals and carsto trigger safety alarms and lighting. They are used to detect movement
and ideal for security such as burglar alarms and security lighting systems. In this project, we will use the ESP32
control human body infrared sensorbuzzer and LED to simulate burglar alarm.

7.17.2 2.Components

ESP32*1 Human Body Infrared Sen-
sor*1

Active Buzzer*1 Red LED*1

Breadboard*1 M-F Dupont Wires 220Resistor*1 USB Cable*1 Jumper
Wires

402 Chapter 7. Python Project

keyestudio WiKi

7.17.3 3.Component knowledge

Human Body Infrared Sensor :
Its principle is that when some crystals, such as lithium tantalate and triglyceride sulfate are heated, the two ends of
the crystal will generate an equal number of charges with opposite signs. These charges can be converted into voltage
output by an amplifier. Due to the human body will release infrared light, although relatively weak, can still be detected.
When the Human Body Infrared Sensor detects the movement of a nearby person, the sensor signal terminal outputs a
high level 1, otherwise, it outputs low level 0.

Special attention should be paid to the fact that this sensor can detect peopleanimals and cars in motion, which cannot
be detected in static, and the maximum detection distance is about 7 meters.

Note: Since vulnerable to radio frequency radiation and temperature changes, the PIR motion sensor should be kept
away from heat sources like radiators, heaters and air conditioners, as well as direct irradiation of sunlight, headlights
and incandescent light.

Features:
• Maximum input voltage: DC 3.3 ~ 5V.

• Maximum operating current: 50MA.

• Maximum power: 0.3W.

• Operating temperature: -20 ~ 85℃.

• Output high level is 3V, low level is 0V.

• Delay time: about 2.3 to 3 seconds.

• Detection Angle: about 100 degrees.

• Maximum detection distance: about 7 meters.

• Indicator light output (when the output is high, it will light up).

• Pin limiting current: 50MA.

Schematic diagram:

7.17. Project 16Burglar Alarm 403

keyestudio WiKi

7.17.4 4. Wiring Diagram

404 Chapter 7. Python Project

keyestudio WiKi

7.17.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 16Burglar Alarm”, and then double left-
click “Project_16_Burglar_Alarm.py”.

Import Pin and time modules.
from machine import Pin
import time

Define the pins of the Human infrared sensor,led and Active buzzer.
sensor_pir = Pin(15, Pin.IN)
led = Pin(0, Pin.OUT)
buzzer = Pin(2, Pin.OUT)

(continues on next page)

7.17. Project 16Burglar Alarm 405

keyestudio WiKi

(continued from previous page)

while True:
if sensor_pir.value():

buzzer.value(1)
led.value(1)
time.sleep(0.2)
buzzer.value(0)
led.value(0)
time.sleep(0.2)

else:
buzzer.value(0)
led.value(0)

7.17.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that if the human body infrared sensor detects
someone moving nearby, the buzzer will continuously issue an alarm and the LED will continuously flash.

Press“Ctrl+C”or click “Stop/Restart backend” to exit the program.

406 Chapter 7. Python Project

keyestudio WiKi

7.18 Project 17 I2C 128×32 LCD

7.18.1 1.Introduction

In everyday life, we can do all kinds of experiments with the display module and also DIY a variety of small objects.
For example, you can make a temperature meter with a temperature sensor and display, or make a distance meter with an
ultrasonic module and display. In this project, we will use the LCD_128X32_DOT module as the display and connect it
to the ESP32, which will be used to control the LCD_128X32_DOT display to display various English words, common
symbols and numbers.

7.18. Project 17 I2C 128×32 LCD 407

keyestudio WiKi

7.18.2 2.Components

ESP32*1 Breadboard*1

LCD_128X32_DOT*1 M-F Dupont Wires USB Cable*1

7.18.3 3.Component knowledge

LCD_128X32_DOT:
It is an LCD module with 128*32 pixels and its driver chip is ST7567A. The module uses the IIC communication
mode, while the code contains a library of all alphabets and common symbols that can be called directly. When using,
we can also set it in the code so that the English letters and symbols show different text sizes.

To make it easy to set up the pattern display, we also provide a mold capture software that converts a specific pattern
into control code and then copies it directly into the test code for use.

Schematic diagram of LCD_128X32_DOT

408 Chapter 7. Python Project

keyestudio WiKi

Features:
• Pixel: 128*32 character

• Operating voltage(chip)4.5V to 5.5V

• Operating current100mA (5.0V)

• Optimal operating voltage(module):5.0V

7.18. Project 17 I2C 128×32 LCD 409

keyestudio WiKi

7.18.4 4.Wiring Diagram

7.18.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

410 Chapter 7. Python Project

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 17I2C 128×32
LCD”. Select“lcd128_32.py”and “lcd128_32_fonts.py”click your mouse to select“Upload
to”wait for“lcd128_32.py”and“lcd128_32_fonts.py”to be uploaded to ESP32and then
click“Project_17_I2C_128_32_LCD.py”.

7.18. Project 17 I2C 128×32 LCD 411

keyestudio WiKi

import machine
import time
import lcd128_32_fonts
from lcd128_32 import lcd128_32

#i2c config
clock_pin = 22
data_pin = 21
bus = 0
i2c_addr = 0x3f
use_i2c = True

def scan_for_devices():
i2c = machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_pin))
devices = i2c.scan()
if devices:

for d in devices:
print(hex(d))

else:
print('no i2c devices')

if use_i2c:
scan_for_devices()
lcd = lcd128_32(data_pin, clock_pin, bus, i2c_addr)

lcd.Clear()
lcd.Cursor(0, 4)

lcd.Display("KEYESTUDIO")
lcd.Cursor(1, 0)
lcd.Display("ABCDEFGHIJKLMNOPQR")
lcd.Cursor(2, 0)

(continues on next page)

412 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

lcd.Display("123456789+-*/<>=$@")
lcd.Cursor(3, 0)
lcd.Display("%^&(){}:;'|?,.~\\[]")
"""
while True:

scan_for_devices()
time.sleep(0.5)

"""

7.18.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the 128X32 LCD module display
will show “KEYESTUDIO” at the first line, “ABCDEFGHIJKLMNOPQR” will be displayed at the second line,
“123456789±*/<>=$@” will be shown at the third line and “%^&(){}:;’|?,.~\[]” will be displayed at the fourth line.

Press “Ctrl+C” or click “Stop/Restart backend” to exit the program.

7.18. Project 17 I2C 128×32 LCD 413

keyestudio WiKi

7.19 Project 18Small Fan

7.19.1 1.Introduction

In hot summer, we need electric fans to cool us down, so in this project, we will use ESP32 control 130 motor module
and small fan blade to make a small electric fan.

414 Chapter 7. Python Project

keyestudio WiKi

7.19.2 2.Components

ESP32*1 Breadboard*1 Battery Holder*1 Fan*1

130 Motor Module*1 Keyestudio bread board special
power module*1

M-F Dupont Wires No.5 battery (self-
provided)*6

USB Cable*1

7.19.3 3.Component knowledge :

130 motor module: The motor control module uses the HR1124S motor control chip. which is a single-channel H-
bridge driver chip for DC motor. The H-bridge driver part of the HR1124S uses low on-resistance PMOS and NMOS
power tubes. The low on-resistance ensure low power loss of the chip and make the chip work safely for longer time
In addition, the HR1124S has low standby current and low static operating current, which makes the HR1124S easy to
use in toy solutions.

Features:
• Working voltage: 5V

• Working current: 200MA

• Working power: 2W

• Working temperature: -10℃~ +50℃

Schematic diagram of 130 motor module

7.19. Project 18Small Fan 415

keyestudio WiKi

Keyestudio Breadboard Power Supply Module

Introduction:
This breadboard power supply module is compatible with 5V and 3.3V, which can be applied to MB102 breadboard.
The module contains two channels of independent control, powered by the USB all the way.

The output voltage is constant for the DC5V, and another way is powered by DC6.5-12V, output controlled by the slide
switch, respectively for DC5V and DC3.3V.

If the other power supply is DC 6.5-12v, when the slide switch is switched to +5V, the output voltages of the left and
right lines of the module are DC 5V. When the slide switch is switched to +3V, the output voltage of the USB power
supply terminal of the module is DC5V , and the output voltage of the DC 6.5-12V power supply terminal of the other
power supply is DC3.3V.

Specification:
• Applied to MB102 breadboard;

• Input voltageDC 6.5-12V or powered by USB;

• Output voltage3.3V or 5V

• Max output current<700ma

• Up and down two channels of independent control, one of which can be switched to 3.3V or 5V;

• Comes with two sets of DC output pins, easy for external use.

416 Chapter 7. Python Project

keyestudio WiKi

7.19.4 4. Wiring Diagram

(Note: Connect the wires and then install a small fan blade on the DC motor.)

7.19.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 18Small Fan”, and then double left-
click“Project_18_ Small_Fan.py”.

7.19. Project 18Small Fan 417

keyestudio WiKi

from machine import Pin
import time

motor1a = Pin(15, Pin.OUT) # create motor1a object from Pin 15, Set Pin 15 to output
motor1b = Pin(2, Pin.OUT) # create motor1b object from Pin 2, Set Pin 2 to output

def forward():
motor1a.value(1) # Set motor1a high
motor1b.value(0) # Set motor1b low

def backward():
motor1a.value(0)
motor1b.value(1)

def stop():
motor1a.value(0)
motor1b.value(0)

def test():
forward() # motor forward
time.sleep(5) #delay
stop() # motor stop
time.sleep(2)
backward()# motor backward
time.sleep(5)
stop()
time.sleep(2)

for i in range(5):
test()

418 Chapter 7. Python Project

keyestudio WiKi

7.19.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

External power supply and power on.

Click “Run current script”, the code starts to be executed and you’ll see that the small fan turns counterclockwise
for 5 seconds and stops for 2 seconds, and then turns clockwise for 5 seconds and stops for 2 seconds.

Repeat this rule for 5 times and then the small fan stops.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

7.19. Project 18Small Fan 419

keyestudio WiKi

7.20 Project 19Servo Sweep

7.20.1 1.Introduction

Servo is an electric motor that can rotate very precisely. At present, it has been widely used in toy carsremote control
helicoptersairplanesrobots, etc. In this project, we will use ESP32 to control the rotation of the servo.

7.20.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

Servo*1 Jumper Wires

420 Chapter 7. Python Project

keyestudio WiKi

7.20.3 3.Component knowledge

Servo

The servo is a kind of position servo driver, which is mainly composed of housing, circuit board, copless motor, gear
and position detector.

Its working principle is that the receiver or microcontroller sends a signal to the servo which has an internal reference
circuit that generates a reference signal with a period of 20ms and a width of 1.5ms, and compares the DC bias voltage
with the voltage of the potentiometer to output voltage difference.The IC on the circuit board determines the direction
of rotation, and then drives the coreless motor to start rotation and transmits the power to the swing arm through the
reduction gear, while the position detector sends back a signal to determine whether it has reached the positioning.

It is suitable for those control systems that require constant change of angle and can be maintained.

When the motor rotates at a certain speed, the potentiometer is driven by the cascade reduction gear to rotate so that
the voltage difference is 0 and the motor stops rotating. The angle range of general servo rotation is 0 to 180 degrees.

The pulse period for controlling the servo is 20ms, the pulse width is 0.5ms to 2.5ms, and the corresponding position
is -90 degrees to +90 degrees. The following is an example of a 180 degree servo

Servo motors have many specifications, but they all have three connecting wires, which are brown, red, and orange
(different brands may have different colors). The brown is GND, the red is the positive power supply, and the orange is
the signal line.

7.20. Project 19Servo Sweep 421

keyestudio WiKi

7.20.4 4.Wiring Diagram

When supplying the servo, please note that the power supply voltage should be 3.3V-5V. Make sure there are no errors
when connecting the servo to the power supply.

422 Chapter 7. Python Project

keyestudio WiKi

7.20.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 19Servo Sweep”.
Select“myservo.py”right-click your mouse to select“Upload to /”wait for“myservo.py”to be uploaded to ESP32and
then click“Project_19_Servo_Sweep.py”.

7.20. Project 19Servo Sweep 423

keyestudio WiKi

from myservo import myServo #Import myservo module.
import time

#Initialize pins of the servo and set the starting point of the servo to 0 degree.
servo=myServo(15)
servo.myServoWriteAngle(0)
time.sleep_ms(1000)

try:
while True:

#Use two for loops. The first one controls the servo to rotate from 0 degree to 180␣
→˓degrees
#while the other controls it to rotate back from 180 degrees to 0 degree.

for i in range(0,180,1):
servo.myServoWriteAngle(i) #Control the servo to rotate to a specified angle␣

→˓within the range of 0-180 degrees.
time.sleep_ms(15)

for i in range(180,0,-1):
servo.myServoWriteAngle(i)
time.sleep_ms(15)

except:
servo.deinit()

424 Chapter 7. Python Project

keyestudio WiKi

7.20.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the Servo will rotate from 0 degrees to
180 degrees and then reverse the direction to make it rotate from 180 degrees to 0 degrees and repeat these actions in
an endless loop.

Press“Ctrl+C”or click “Stop/Restart backend” to exit the program.

7.20. Project 19Servo Sweep 425

keyestudio WiKi

7.21 Project 20Stepping Motor

7.21.1 1.Introduction

Stepper motor is the most important part of industrial robot 3D printer lathes and other mechanical equipment with
accurate positioning. In this project, we will use ESP32 control ULN2003 stepper motor drive board to drive the stepper
motor to rotate.

7.21.2 2.Components

ESP32*1 Breadboard*1 ULN2003 Stepper Motor Drive
Board*1

Stepper Motor *1 M-F Dupont Wires USB Cable*1

Battery Holder*1 Keyestudio bread board special power mod-
ule*1

No.5 battery (self-provided)*6

426 Chapter 7. Python Project

keyestudio WiKi

7.21.3 3.Component knowledge :

Stepper motor:
It is a motor controlled by a series of electromagnetic coils. It can rotate by the exact number of degrees (or steps)
needed, allowing you to move it to a precise position and keep it there. It does this by supplying power to the coil inside
the motor in a very short time, but you must always supply power to the motor to keep it in the position you want.

There are two basic types of stepping motors, namely unipolar stepping motor and bipolar stepping motor. In this
project, we use a 28-BYJ48 unipolar stepper motor.

Working Principle:
The stepper motor is mainly composed of a stator and a rotor. The stator is fixed. As shown in the figure below, the
part of the coil group A, B, C, and D will generate a magnetic field when the coil group is energized. The rotor is the
rotating part. As follows, the middle part of the stator, two poles are permanent magnets.

Single -phase four beat:

At the beginning, the coils of group A are turned on, and the poles of the rotor point at A coil. Next, the group A coil
are disconnected, and the group B coils are turned on. The rotor will turn clockwise to the group B. Then, group B is
disconnected, group C is turned on, and the rotor is turned to group C. After that, group C is disconnected, and group
D is turned on, and the rotor is turned to group D. Finally, group D is disconnected, group A is turned on, and the rotor
is turned to group A coils. Therefore, rotor turns 180° and continuously rotates B-C-D-A, which means it runs a circle
(eight phase).

7.21. Project 20Stepping Motor 427

keyestudio WiKi

As shown below, he rotation principle of stepper motor is A - B C - D - A.

You make order inverse(D - C - B - A - D . . .) if you want to make stepper motor rotate anticlockwise.

Half-phase and eight beat:

8 beat adopts single and dual beat wayA - AB B - BC - C - CD - D - DA - A . . . rotor will rotate half phase in this
order. For example, when A coil is electrifiedrotor faces to A coil , then A and B coil are connected, on this condition,
the strongest magnetic field produced lies in the central part of AB coil, which means rotating half-phase clockwise.

Stepper Motor Parameters:
The rotor rotates one circle when the stepper motor we provide rotates 32 phases and with the output shaft driven by
1:64 reduction geared set. Therefore the rotation (a circle) of output shaft requires 32 * 64 = 2048 phases.

The step angle of 4-beat mode of 5V and 4-phase stepper motor is 11.25. And the step angle of 8-beat mode is 5.625,
the reduction ratio is 1:64.

ULN2003Stepper Motor Drive Board: It is a stepper motor driver, which converts the weak signal into a stronger
control signal to drive the stepper motor.

The following schematic diagram shows how to use the ULN2003 stepper motor driver board interface to connect a
unipolar stepper motor to the pins of the ESP32, and shows how to use four TIP120 interfaces.

428 Chapter 7. Python Project

keyestudio WiKi

7.21. Project 20Stepping Motor 429

keyestudio WiKi

7.21.4 4.Wiring Diagram

430 Chapter 7. Python Project

keyestudio WiKi

7.21.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 20Stepping Motor”, and then double
left-click “Project_20_Stepping_Motor.py”.

from machine import Pin
import time

Pin initialization
in1 = Pin(15, Pin.OUT)
in2 = Pin(16, Pin.OUT)
in3 = Pin(17, Pin.OUT)
in4 = Pin(18, Pin.OUT)

(continues on next page)

7.21. Project 20Stepping Motor 431

keyestudio WiKi

(continued from previous page)

Delay time
delay = 1

The number of steps required for the motor to rotate one revolution, (about 360°),␣
→˓with a slight deviation
ROUND_VALUE = 509

The sequence value of the four-phase eight-beat stepper motor: A-AB-B-BC-C-CD-D-DA-A
STEP_VALUE = [

[1, 0, 0, 0],
[1, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, 0],
[0, 0, 1, 1],
[0, 0, 0, 1],
[1, 0, 0, 1],

]

Pin output low level
def reset():

in1(0)
in2(0)
in3(0)
in4(0)

If count is positive integers turn clockwise, if count is negative integers turn␣
→˓counterclockwise
def step_run(count):

direction = 1 # turn clockwise
if count < 0:

direction = -1 # turn counterclockwise
count = -count

for x in range(count):
for bit in STEP_VALUE[::direction]:

in1(bit[0])
in2(bit[1])
in3(bit[2])
in4(bit[3])
time.sleep_ms(delay)

reset()

If a is positive integers turn clockwise, if a is negative integers turn␣
→˓counterclockwise
def step_angle(a):

step_run(int(ROUND_VALUE * a / 360))

Cycle: turn clockwise one circle, then counterclockwise one circle.
while True:

step_run(509)
step_run(-509)
step_angle(360)

(continues on next page)

432 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

step_angle(-360)

7.21.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

External power supply and power on. Click “Run current script”, the code starts to be executed and you’ll see that
the four LEDs (D1,D2,D3 ,D4) on the ULN2003 drive module will light up. The stepper motor rotates clockwise first,

then counterclockwise, and repeat these actions in an endless loop. Press“Ctrl+C”or click “Stop/Restart backend”to
exit the program.

7.21. Project 20Stepping Motor 433

keyestudio WiKi

7.22 Project 21Relay

7.22.1 1.Introduction

In our daily life, we usually use communication to drive electrical equipments, and sometimes we use switches to
control electrical equipments. If the switch is connected directly to the ac circuit, leakage occurs and people are in
danger.

Therefore, from the perspective of safety, we specially designed this relay module with NO(normally open) end and
NC(normally closed) end.

In this project, we will learn a relatively special and easy-to-use switch, which is the relay module.

434 Chapter 7. Python Project

keyestudio WiKi

7.22.2 2.Components

ESP32*1 Breadboard*1 Relay Module*1 M-F Dupont Wires USB Cable*1

7.22.3 3.Component knowledge

Relay:
It is an “automatic switch” that uses a small current to control the operation of a large current.

• Input voltage3.3V-5V

• Rated load5A 250VAC (NO/NC) 5A 24VDC (NO/NC)

The rated load means that devices with dc voltage of 24V or AC voltage of 250V can be controlled using 3.3V-5V
microcontrollers.

Schematic diagram of Relay

7.22. Project 21Relay 435

keyestudio WiKi

7.22.4 4. Wiring Diagram

7.22.5 5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open “Thonny”, click “This computer” → “D:” → “2. Python Projects” → “Project 21Relay”, and then click
“Project_21_Relay.py”.

436 Chapter 7. Python Project

keyestudio WiKi

from machine import Pin
import time

create relay from Pin 15, Set Pin 15 to output
relay = Pin(15, Pin.OUT)

The relay is opened, COM and NO are connected on the relay, and COM and NC are␣
→˓disconnected.
def relay_on():

relay(1)

The relay is closed, the COM and NO on the relay are disconnected, and the COM and NC␣
→˓are connected.
def relay_off():

relay(0)

Loop, the relay is on for one second and off for one second
while True:

relay_on()
time.sleep(1)
relay_off()
time.sleep(1)

7.22. Project 21Relay 437

keyestudio WiKi

7.22.6 6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the relay will cycle on and off, on for 1
second, off for 1 second.

At the same time, you can hear the sound of the relay on and off, and you can also see the change of the indicator light

on the relay. Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

438 Chapter 7. Python Project

keyestudio WiKi

7.23 Project 22Dimming Light

7.23.1 1.Introduction

A potentiometer is a three-terminal resistor with sliding or rotating contacts that forms an adjustable voltage divider.
It works by changing the position of the sliding contacts across a uniform resistance. In the potentiometer, the entire
input voltage is applied across the whole length of the resistor, and the output voltage is the voltage drop between the
fixed and sliding contact.

In this project, we will learn how to use ESP32 to read the values of the potentiometer, and make a dimming lamp with
LED.

7.23.2 2.Components

ESP32*1 Breadboard*1 Potentiometer*1 Red LED*1

220Resistor*1 Jumper Wires USB Cable*1

7.23.3 3.Component knowledge

Adjustable potentiometer:
It is a kind of resistor and an analog electronic component, which has two states of 0 and 1(high level and low level).
The analog quantity is different, its data state presents a linear state such as 1 ~ 1024.

ADC :
An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or binary form
consisting of 1s and 0s. The range of our ADC on ESP32 is 12 bits, that means the resolution is 2^12=4096, and it
represents a range (at 3.3V) will be divided equally to 4096 parts. The rage of analog values corresponds to ADC

7.23. Project 22Dimming Light 439

keyestudio WiKi

values. So the more bits the ADC has, the denser the partition of analog will be and the greater the precision of the
resulting conversion.

Subsection 1: the analog in rang of 0V—3.3/4095 V corresponds to digital 0;

Subsection 2: the analog in rang of 3.3/4095 V—2*3.3 /4095V corresponds to digital 1;

. . .

The following analog will be divided accordingly.

The conversion formula is as follows: $𝐴𝐷𝐶 = 𝐴𝑛𝑎𝑙𝑜𝑔𝑉 𝑜𝑙𝑡𝑎𝑔𝑒/3.3 * 4095$ DAC
The reversing of this process requires a DAC, Digital-to-Analog Converter. The digital I/O port can output high level
and low level (0 or 1), but cannot output an intermediate voltage value. This is where a DAC is useful. ESP32 has two
DAC output pins with 8-bit accuracy, GPIO25 and GPIO26, which can divide VCC (here is 3.3V) into 2^8=256 parts.
For example, when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when the digital quantity is
128, the output voltage value is 3.3/256*128=1.65V, the higher the accuracy of DAC, the higher the accuracy of output
voltage value will be.

The conversion formula is as follows: $𝐴𝑛𝑎𝑙𝑜𝑔𝑉 𝑜𝑙𝑡𝑎𝑔𝑒 = 𝐷𝐴𝐶/255 * 3.3(𝑉)$ ADC on ESP32
ESP32 has 16 pins can be used to measure analog signals. GPIO pin sequence number and analog pin definition are
shown in the following table

ADC number in ESP32 ESP32 GPIO number
ADC0 GPIO 36
ADC3 GPIO 39
ADC4 GPIO 32
ADC5 GPIO33
ADC6 GPIO34
ADC7 GPIO 35
ADC10 GPIO 4
ADC11 GPIO0
ADC12 GPIO2
ADC13 GPIO15
ADC14 GPIO13
ADC15 GPIO 12
ADC16 GPIO 14
ADC17 GPIO27
ADC18 GPIO25
ADC19 GPIO26

440 Chapter 7. Python Project

keyestudio WiKi

DAC on ESP32
ESP32 has two 8-bit digital analog converters to be connected to GPIO25 and GPIO26 pins, respectively, and it is
immutable. As shown in the following table

Simulate pin number GPIO number
DAC1 GPIO25
DAC2 GPIO26

7.23.4 4.Read the ADC value, DAC value and voltage value of the potentiometer

We connect the potentiometer to the analog IO port of ESP32 to read the ADC value, DAC value and voltage value of
the potentiometer, please refer to the wiring diagram below

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

7.23. Project 22Dimming Light 441

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 22Dimming Light”and then double left-
click “Project_22.1_Read_Potentiometer_Analog_Value.py”.

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
adcVal=adc.read()

(continues on next page)

442 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE will
print the ADC value, DAC value and voltage value of the potentiometer, turn the potentiometer handle, the ADC value

and voltage value will change. Press “Ctrl+C” or click “Stop/Restart backend” to exit the program.

7.23. Project 22Dimming Light 443

keyestudio WiKi

444 Chapter 7. Python Project

keyestudio WiKi

7.23.5 5.Wiring diagram of the dimming lamp

In the previous step, we read the ADC value, DAC value and voltage value of the potentiometer. Now we need to convert
the ADC value of the potentiometer into the brightness of the LED to make a lamp that can adjust the brightness.The
wiring diagram is as follows:

7.23.6 6.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

7.23. Project 22Dimming Light 445

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 22Dimming Light”and then
click“Project_22.2_Dimming_Light.py”.

from machine import Pin,PWM,ADC
import time

pwm =PWM(Pin(15,Pin.OUT),1000)
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_10BIT)

try:
while True:

adcValue=adc.read()
pwm.duty(adcValue)
print(adc.read())
time.sleep_ms(100)

except:
pwm.deinit()

446 Chapter 7. Python Project

keyestudio WiKi

7.23.7 7.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

Click “Run current script”, the code starts to be executed and you’ll see that turn the potentiometer handle and the

brightness of the LED will change accordingly. Press “Ctrl+C” or click “Stop/Restart backend” to exit the program.

7.23. Project 22Dimming Light 447

keyestudio WiKi

7.24 Project 23Flame Alarm

7.24.1 1.Introduction

Fire is a terrible disaster and fire alarm systems are very useful in housescommercial buildings and factories. In this
project, we will use ESP32 to control a flame sensor, a buzzer and a LED to simulate fire alarm devices. This is a
meaningful maker activity.

7.24.2 2.Components

ESP32*1 Breadboard*1 Red LED*1 Active Buzzer*1

Flame Sensor*1 220Resistor*1 10KResistor*1 Jumper Wires

NPN transistor(S8050)*1 1k Resistor*1 USB Cable*1

448 Chapter 7. Python Project

keyestudio WiKi

7.24.3 3.Component knowledge

The flame emits a certain amount IR light that is invisible to the human eye, but our flame sensor can detect it and
alert a microcontroller (such as ESP32) that a fire has been detected. It has a specially designed infrared receiver tube
to detect the flame and then convert the flame brightness into a fluctuating level signal. The short pin of the receiving
triode is negative pole and the other long pin is positive pole. We should connect the short pin (negative) to 5V and the
long pin (positive) to the analog pin, a resistor and GND. As shown in the figure below

Note:
Since vulnerable to radio frequency radiation and temperature changes, the flame sensor should be kept away from heat
sources like radiators, heaters and air conditioners, as well as direct irradiation of sunlight, headlights and incandescent
light.

7.24. Project 23Flame Alarm 449

keyestudio WiKi

7.24.4 4.Read the ADC value, DAC value and voltage value of the flame sensor

We first use a simple code to read the ADC value, DAC value and voltage value of the flame sensor and print them out.
Please refer to the wiring diagram below

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

450 Chapter 7. Python Project

keyestudio WiKi

Open“Thonny”, click “This computer”→“D:”→“2. Python Projects”→“Project 23Flame Alarm”and then double left-
click “Project_23.1_Read_Analog_Value_Of_Flame_Sensor.py”.

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

7.24. Project 23Flame Alarm 451

keyestudio WiKi

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE will
print the ADC valueDAC value and voltage value of the flame sensor.

When the flame is close to the flame sensor, the ADC value, DAC value and voltage value increase; Conversely, the

ADC value, DAC value and voltage value decrease. Press “Ctrl+C” or click “Stop/Restart backend” to exit the
program.

452 Chapter 7. Python Project

keyestudio WiKi

7.24.5 5.Wiring diagram of the flame alarm

Next, we will use a flame sensor, a buzzer, and a LED to make an interesting project, that is flame alarm. When flame
is detected, the LED flashes and the buzzer alarms.

7.24. Project 23Flame Alarm 453

keyestudio WiKi

7.24.6 6.Project code

Note: the threshold of 500 in the code can be reset itself as required)

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 23Flame Alarm”, and then double left-
click “Project_23.2_Flame_Alarm.py”.

454 Chapter 7. Python Project

keyestudio WiKi

from machine import ADC, Pin
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)
create LED object from Pin 15,Set Pin 15 to output
led = Pin(15, Pin.OUT)
create buzzer object from Pin 4, Set Pin 4 to output
buzzer = Pin(4, Pin.OUT)

If the flame sensor detects a flame, the buzzer will beep
and the LED will blink when the analog value is greater than 500
Otherwise, the buzzer does not sound and the LED goes off
while True:

adcVal=adc.read()
if adcVal >500:

buzzer.value(1) # Set buzzer turn on
led.value(1) # Set led turn on
time.sleep(0.5) # Sleep 0.5s
buzzer.value(0)
led.value(0) # Set led turn off
time.sleep(0.5) # Sleep 0.5s

else:
buzzer.value(0) # Set buzzer turn off
led.value(0) # Set led turn off

7.24. Project 23Flame Alarm 455

keyestudio WiKi

7.24.7 7.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

Click “Run current script”, the code starts to be executed and you’ll see that when the flame sensor detects the flame,
the LED flashes and the buzzer alarms.

Otherwise, the LED does not light, the buzzer does not sound.Press“Ctrl+C”or click “Stop/Restart backend” to exit
the program.

456 Chapter 7. Python Project

keyestudio WiKi

7.25 Project 24Night Lamp

7.25.1 1.Introduction

Sensors or components are ubiquitous in our daily life. For example, some public street lamps will automatically turn
on at night and turn off during the day.

Why? In fact, this make use of a photosensitive element that senses the intensity of external ambient light.

When the outdoor brightness decreases at night, the street lights will turn on automatically; In the daytime, the street
lights will automatically turn off. the principle of which is very simple, In this Project, we use ESP32 to control a LED
to achieve the effect of the street light.

7.25.2 2.Components

ESP32*1 Breadboard*1 Red LED*1 10KResistor*1

Photoresistor*1 220Resistor*1 Jumper Wires USB Cable*1

7.25.3 3.Component knowledge

Photoresistor :
It is a kind of photosensitive resistance, its principle is that the photoresistor surface receives brightness (light) to reduce
the resistance, the resistance value will change with the detected intensity of the ambient light . With this characteristic,
we can use the photosensitive resistance to detect the light intensity.

Photosensitive resistance and its electronic symbol are as follows

7.25. Project 24Night Lamp 457

keyestudio WiKi

The following circuit is used to detect changes in resistance values of photoresistors

In the circuit above, when the resistance of the photoresistor changes due to the change of light intensity, the voltage
between the photoresistor and resistance R2 will also change. Thus, the intensity of light can be obtained by measuring
this voltage.

7.25.4 4.Read the ADC value, DAC value and voltage value of the photoresistor

We first use a simple code to read the ADC value, DAC value and voltage value of the photoresistor and print them out.
Please refer to the following wiring diagram

458 Chapter 7. Python Project

keyestudio WiKi

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 24Night Lamp”and then double left-
click “Project_24.1_Read_Photosensitive_Analog_Value.py”.

7.25. Project 24Night Lamp 459

keyestudio WiKi

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

460 Chapter 7. Python Project

keyestudio WiKi

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE will
print the ADC valueDAC value and voltage value of the photoresistor.

When the light intensity around the photoresistor is gradually reduced, the ADC valueDAC value and voltage value
will gradually increase. On the contrary, the ADC value, DAC value and voltage value decreases gradually.

Press“Ctrl+C”or click “Stop/Restart backend” to exit the program.

7.25. Project 24Night Lamp 461

keyestudio WiKi

7.25.5 5.Wiring diagram of the light-controlled lamp

We made a small dimming lamp in the front, now we will make a light controlled lamp. The principle is the same, that
is, the ESP32 takes the ADC value of the sensor, and then adjusts the brightness of the LED.

462 Chapter 7. Python Project

keyestudio WiKi

7.25.6 6.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 24Night Lamp”and then double left-
click “Project_24.2_Night_Lamp.py”.

7.25. Project 24Night Lamp 463

keyestudio WiKi

from machine import Pin,PWM,ADC
import time

pwm =PWM(Pin(15,Pin.OUT),1000)
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_10BIT)

try:
while True:

adcValue=adc.read()
pwm.duty(adcValue)
print(adc.read())
time.sleep_ms(100)

except:
pwm.deinit()

7.25.7 7.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

464 Chapter 7. Python Project

keyestudio WiKi

Click “Run current script”, the code starts to be executed and you’ll see that when the intensity of light around the
photoresistor is reduced, the LED will be bright, on the contraty, the LED will be dim.

Press“Ctrl+C”or click “Stop/Restart backend” to exit the program.

7.25. Project 24Night Lamp 465

keyestudio WiKi

7.26 Project 25Human Induction Lamp

7.26.1 1.Introduction

Human body induction lamp is used commonly in the dark corridor area. With the development of science and technol-
ogy, the use of the human body induction lamp is very common in our real life, such as the corridor of the community,
the bedroom of the room, the garage of the dungeon, the bathroom and so on. The human induction lamp are generally
composed of a human body infrared sensor, a led, a photoresistor sensor and so on.

In this project, we will learn how to use a Human Body Infrared Sensor, a led, and a photoresistor to make a human
induction lamp.

7.26.2 2.Components

ESP32*1 Breadboard*1 Red LED*1 10KResistor*1 Jumper
Wires

USB Cable*1

Photoresistor*1 Human Body Infrared
Sensor*1

220Resistor*1 M-F Dupont
Wires

466 Chapter 7. Python Project

keyestudio WiKi

7.26.3 3.Wiring Diagram

7.26.4 4.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”, click“This computer”→“D:”→“2. Python Projects”→“Project 25Human Induction Lamp”and then
double left-click “Project_25_Human_ Induction_Lamp.py”.

7.26. Project 25Human Induction Lamp 467

keyestudio WiKi

from machine import Pin, ADC
import time

Human infrared sensor pin
human = Pin(15, Pin.IN)

Initialize the photosensitive sensor pin to GP36 (ADC function)
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_10BIT)
#create the LED object from Pin 4, Set Pin 4 to output
led = Pin(4, Pin.OUT)

def detect_someone():
if human.value() == 1:

return True
return False

abc = 0

while True:
adcVal=adc.read()
if adcVal >= 500:

if detect_someone() == True:
abc += 1
led.value(1)
print("value=", abc)
time.sleep(1)

else:
if abc != 0:

abc = 0
(continues on next page)

468 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

led.value(0)
else:

led.value(0)

time.sleep(0.1)

7.26.5 5.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that When your hand covers the photosensitive
part of the photoresistor to simulate darkness, then shake your other hand in front of the Human Body Infrared Sensor,
the external LED will light up, and after a delay of a few seconds, the external LED will automatically turn off.

At the same time, the “Shell” window of Thonny IDE will print the delay time when the external LED lights up. If the
photosensitive part of the photoresistor is not covered, then shake your hand in front of the human infrared sensor and

the LED is turned off. Press “Ctrl+C” or click “Stop/Restart backend” to exit the program.

7.26. Project 25Human Induction Lamp 469

keyestudio WiKi

7.27 Project 26Sound Control Fan

7.27.1 1.Introduction

The sound sensor has a built-in capacitive electret microphone and power amplifier which can be used to detect the
sound intensity of the environment. In this project, we use ESP32 to control the sound sensor and the motor module to
simulate a voice-controlled fan.

470 Chapter 7. Python Project

keyestudio WiKi

7.27.2 2.Components

ESP32*1 Breadboard*1 Sound Sensor*1

130 Motor Module*1 M-F Dupont Wires USB Cable*1

Keyestudio bread board special power mod-
ule*1

Battery Holder*1 No.5 battery (self-
provided)*6

Fan*1

7.27.3 3.Component knowledge

Sound sensor is usually used to detect the loudness of the sound in the surrounding environment. Microcontrol board
can collect its output signal through the analog input interface.The S pin is an analog output, which is the real-time
output of the microphone voltage signal. The sensor comes with a potentiometer so you can adjust the signal strength.
It also has two fixing holes so that the sensor can be installed on any other equipment. You can use it to make some

7.27. Project 26Sound Control Fan 471

keyestudio WiKi

interactive works, such as voice-operated switches.

7.27.4 4.Read the ADC value, DAC value and voltage value of the sound sensor

We first use a simple code to read the ADC value, DAC value and voltage value of the sound sensor and print them out.
Please refer to the wiring diagram below

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

472 Chapter 7. Python Project

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 26Sound Control Fan”, and then double
left-click “Project_26.1_Read_Sound_Sensor_Analog_Value.py”.

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
(continues on next page)

7.27. Project 26Sound Control Fan 473

keyestudio WiKi

(continued from previous page)

adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE will
print the ADC valueDAC value and voltage value of the sound sensor.

When you clap your hands to the sensor, the ADC value, DAC value and voltage value will change significantly.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

474 Chapter 7. Python Project

keyestudio WiKi

7.27.5 5.Wiring diagram of the intelligent fan

Next, we officially entered the project. We used a sound sensor, a motor module and a fan blade to simulate a voice-
controlled fan. The wiring diagram is as follows

7.27. Project 26Sound Control Fan 475

keyestudio WiKi

(Note: Connect the wires and then install a small fan blade on the DC motor.)

476 Chapter 7. Python Project

keyestudio WiKi

7.27.6 6.Project code

Note The threshold 600 in the code can be reset itself as needed)

Codes used in this tutorial are saved in “2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”, click “This computer”→“D:”→“2. Python Projects”→“Project 26Sound Control Fan”and then click
“Project_26.2_Sound_Control_Fan.py”.

from machine import ADC, Pin
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)

(continues on next page)

7.27. Project 26Sound Control Fan 477

keyestudio WiKi

(continued from previous page)

adc.width(ADC.WIDTH_12BIT)

Pin initialization
motor1a = Pin(15, Pin.OUT) # create motor1a object from Pin 15, Set Pin 15 to output
motor1b = Pin(2, Pin.OUT) # create motor1b object from Pin 2, Set Pin 2 to output

If the Sound sensor detects Sounds, and the motor will rotate
when the analog value is greater than 600,Otherwise, the motor does not rotate.
while True:

adcVal=adc.read()
print(adcVal)
time.sleep(0.5)
if adcVal >600:

motor1a.value(1) # Set motor1a high
motor1b.value(0) # Set motor1b low
time.sleep(5) # delay time

else:
motor1a.value(0)
motor1b.value(0)

7.27.7 7.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

External power supply and power on.

Click “Run current script”, the code starts to be executed and you’ll see that clap your hands to the sound sensor, and
when the sound intensity exceeds a threshold, the small fan rotates; conversely, the small fan doesn’t rotate.

478 Chapter 7. Python Project

keyestudio WiKi

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

7.28 Project 27Temperature Measurement

7.28.1 1.Introduction

LM35 is a common used and easy-to-use temperature sensor. It doesn’t require any other hardware and you only need
an analog port. The difficulty lies in compiling the code and converting the analog values to Celsius temperature. In
this project, we used a temperature sensor and 3 LEDs to make a temperature tester. When the temperature sensor
touches different temperature objects, the LEDs will show different colors.

7.28. Project 27Temperature Measurement 479

keyestudio WiKi

7.28.2 2.Components

ESP32*1 Breadboard*1 LM35*1 USB Ca-
ble*1

M-F Dupont
Wires

Jumper
Wires

220 Resistor*3 Red LED*1 Yellow LED*1 Green
LED*1

7.28.3 3.Component knowledge

Working principle of LM35 temperature sensor:
LM35 temperature sensor is a widely used temperature sensor with a variety of package types. At room temperature,
it can achieve the accuracy of 1/4°C without additional calibration processing. LM35 temperature sensor can produce
different voltage according to different temperatures, when the temperature is 0 ℃, it output 0V; If increasing 1 ℃, the
output voltage will increase 10mv. The output temperature is 0℃ to 100℃, the conversion formula is as follows

7.28.4 4.Read the temperature value of the LM35

We first use a simple code to read the value of the temperature sensor and printing them out, wiring diagram is shown
below

480 Chapter 7. Python Project

keyestudio WiKi

LM35 output is given to analog pin GPIO36 of the ESP32, this analog voltage is converted to its digital form and
processed to get the temperature reading.

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open “Thonny”click “This computer”→“D:”→“2. Python Projects”→“Project 27Temperature Measurement”, and
then double left-click “Project_27.1_Read_LM35_Temperature_Value.py”.

7.28. Project 27Temperature Measurement 481

keyestudio WiKi

from machine import ADC, Pin
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)
conversion_factor = 3.3 / (4095)

while True:
adcVal=adc.read()
reading = adcVal * conversion_factor
temperature = reading * 102.4
print(temperature)
time.sleep(1)

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

482 Chapter 7. Python Project

keyestudio WiKi

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE will
print the temperature values read by the LM35 temperature sensor.

Hold the LM35 element by hand, the temperature value read by the LM35 temperature sensor will change. Press

“Ctrl+C” or click “Stop/Restart backend” to exit the program.

7.28. Project 27Temperature Measurement 483

keyestudio WiKi

7.28.5 5.Diagram of the temperature measurement

Now we use a LM35 temperature sensor and three LED lights to do a temperature test. When the LM35 temperature
sensor senses different temperatures, different LED lights will light up. Follow the diagram below for wiring.

484 Chapter 7. Python Project

keyestudio WiKi

7.28.6 6.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 27Temperature Measurement”and then
double left-click “Project_27.2_Temperature_Measurement.py”.

(Note: The temperature threshold in the code can be reset itself as required.)

from machine import ADC, Pin
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)
conversion_factor = 3.3 / (4095)

(continues on next page)

7.28. Project 27Temperature Measurement 485

keyestudio WiKi

(continued from previous page)

create red led object from Pin 15, Set Pin 15 to output
led_red = Pin(15, Pin.OUT)
create yellow led object from Pin 2, Set Pin 2 to output
led_yellow = Pin(2, Pin.OUT)
create green led object from Pin 4, Set Pin 4 to output
led_green = Pin(4, Pin.OUT)

while True:
adcVal=adc.read()
reading = adcVal * conversion_factor
temperature = reading * 102.4
print(temperature)
time.sleep(0.2)
if temperature <20:

led_red.value(1) # Set red led turn on
led_yellow.value(0) # Set yellow led turn off
led_green.value(0) # Set green led turn off

elif temperature >=20 and temperature <25:
led_red.value(0) # Set red led turn off
led_yellow.value(1) # Set yellow led turn on
led_green.value(0) # Set green led turn off

else:
led_red.value(0) # Set red led turn off
led_yellow.value(0) # Set yellow led turn off
led_green.value(1) # Set green led turn on

7.28.7 7.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

486 Chapter 7. Python Project

keyestudio WiKi

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE will
print the temperature values read by the LM35 temperature sensor.

When the LM35 temperature sensor senses different temperatures, different LEDS will light up. Press“Ctrl+C”or

click “Stop/Restart backend”to exit the program.

7.28. Project 27Temperature Measurement 487

keyestudio WiKi

7.29 Project 28Rocker control light

7.29.1 1.Introduction

The rocker module is a component with two analog inputs and one digital input. It is widely used in areas such as game
operation, robot control and drone control.

In this project, we use ESP32 and a joystick module to control RGB, so that you can have a deeper understanding of
the principle and operation of the joystick module in practice.

7.29.2 2.Components

ESP32*1 Breadboard*1 Rocker Module*1 USB Cable*1 M-F Dupont
Wires

RGB LED*1 220Resistor*3 Jumper Wires

7.29.3 3.Component knowledge

Rocker module:
It mainly uses PS2 joystick components. In fact, the joystick module has 3 signal terminal pins, which simulate a
three-dimensional space.

The pins of the joystick module are GND, VCC, and signal terminals (B, X, Y). The signal terminals X and Y simulate
the X-axis and Y-axis of the space. When controlling, the X and Y signal terminals of the module are connected to the
analog port of the microcontroller. The signal terminal B simulates the Z axis of the space, it is generally connected to
the digital port and used as a button.

VCC is connected to the microcontroller power output VCC (3.3V or 5V), GND is connected to the microcontroller
GND, the voltage in the original state is about 1.65V or 2.5V.

488 Chapter 7. Python Project

keyestudio WiKi

In the X-axis direction, when moving in the direction of the arrow, the voltage value increases, and the maximum
voltage can be reached. Moving in the opposite direction of the arrow, the voltage value gradually decreases to the
minimum voltage.

In the Y-axis direction, the voltage value decreases gradually as it moves in the direction of the arrow on the module,
decreasing to the minimum voltage. As the arrow is moved in the opposite direction, the voltage value increases and
can reach the maximum voltage.

In the Z-axis direction, the signal terminal B is connected to the digital port and outputs 0 in the original state and
outputs 1 when pressed.

In this way, we can read the two analog values and the high and low level conditions of the digital port to determine
the operating status of the joystick on the module.

Features:
• Input Voltage: DC 3.3V ~ 5V.

• Output Signal: X/Y dual axis analog value +Z axis digital signal.

• Range of Allication: Suitable for control point coordinate movement in plane as well as control of two degrees
of freedom steering gear, etc.

• Product features: Exquisite appearance, joystick feel superior, simple operation, sensitive response, long service
life.

7.29.4 4.Read the value of the Rocker Module

We must use ESP32’s analog IO port to read the value from the X/Y pin of the rocker module and use the digital IO
port to read the digital signal of the button. Please connect the wires according to the wiring diagram below

7.29. Project 28Rocker control light 489

keyestudio WiKi

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

490 Chapter 7. Python Project

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 28Rocker control light”, and then dou-
ble left-click “Project_28.1_Read_Rocker_Value.py”.

from machine import Pin, ADC
import time
Initialize the joystick module (ADC function)
rocker_x=ADC(Pin(36))
rocker_y=ADC(Pin(39))
button_z=Pin(14,Pin.IN,Pin.PULL_UP)

Set the acquisition range of voltage of the two ADC channels to 0-3.3V,
and the acquisition width of data to 0-4095.
rocker_x.atten(ADC.ATTN_11DB)
rocker_y.atten(ADC.ATTN_11DB)
rocker_x.width(ADC.WIDTH_12BIT)
rocker_y.width(ADC.WIDTH_12BIT)

In the code, configure Z_Pin to pull-up input mode.
In loop(), use Read () to read the value of axes X and Y
and use value() to read the value of axis Z, and then display them.
while True:

print("X,Y,Z:",rocker_x.read(),",",rocker_y.read(),",",button_z.value())
time.sleep(0.5)

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

7.29. Project 28Rocker control light 491

keyestudio WiKi

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE will
print the analog and digital values of the current joystick.

Moving the joystick or pressing it will change the analog and digital values in “Shell”. Press“Ctrl+C”or

click “Stop/Restart backend”to exit the program.

492 Chapter 7. Python Project

keyestudio WiKi

7.29. Project 28Rocker control light 493

keyestudio WiKi

7.29.5 5.Wiring diagram

We just read the value of the rocker module, we need to do something with the rocker module and RGB here, Follow
the diagram below for wiring

7.29.6 6.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

494 Chapter 7. Python Project

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 28Rocker control light”and then double
left-click “Project_28.2_Rocker_Control_Light.py”.

from machine import Pin, ADC,PWM
import time
#Set RGB light interface and frequency
rgb_r = PWM(Pin(4))
rgb_g = PWM(Pin(0))
rgb_b = PWM(Pin(2))
rgb_b.freq(1000)
rgb_r.freq(1000)
rgb_g.freq(1000)
#Set rocker pin
rocker_x=ADC(Pin(36))
rocker_y=ADC(Pin(39))
Set the acquisition range of voltage of the two ADC channels to 0-3.3V,
and the acquisition width of data to 0-4095.

(continues on next page)

7.29. Project 28Rocker control light 495

keyestudio WiKi

(continued from previous page)

rocker_x.atten(ADC.ATTN_11DB)
rocker_y.atten(ADC.ATTN_11DB)
rocker_x.width(ADC.WIDTH_12BIT)
rocker_y.width(ADC.WIDTH_12BIT)

while True:
y = rocker_y.read()#Get Y value of rocker
x = rocker_x.read()#Get X value of rocker
if x < 1000: #left

rgb_b.duty(0)
rgb_r.duty(1023)
rgb_g.duty(0)

elif x > 3000: #right
rgb_b.duty(0)
rgb_r.duty(0)
rgb_g.duty(1023)

elif y < 1000: #down
rgb_b.duty(1023)
rgb_r.duty(0)
rgb_g.duty(0)

elif y > 3000: #up
rgb_b.duty(1023)
rgb_r.duty(1023)
rgb_g.duty(1023)

time.sleep(0.01)

7.29.7 7.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

496 Chapter 7. Python Project

keyestudio WiKi

Click “Run current script”, the code starts to be executed and you’ll see that

If the rocker is moved to the far left in the X direction, the RGB light turns red.

If the rocker is moved to the far right in the X direction, the RGB light turns green.

If the rocker is moved to the up in the Y direction, the RGB light turns white.

If the rocker is moved to the down in the Y direction, the RGB light turns blue.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

7.29. Project 28Rocker control light 497

keyestudio WiKi

7.30 Project 29Temperature Humidity Meter

7.30.1 1.Introduction

In winter, the humidity in the air is very low, that is, the air is very dry, Coupled with cold, the skin of the human body
is easy to be too dry and cracked, so you need to use a humidifier to increase the humidity of the air at home, but how
do you know that the air is too dry? Then you need equipment to detect air humidity. In this Project, we will how to
use the temperature and humidity sensor. We use the sensor to make a thermohygrometer, and also combined with a
LCD 128X32 DOT to display the temperature and humidity values.

7.30.2 2.Components

ESP32*1 Breadboard*1 Temperature and Humidity Sensor*1

LCD 128X32 DOT*1 M-F Dupont Wires USB Cable*1

7.30.3 3.Component knowledge

Temperature and humidity sensor:
It is a temperature and humidity composite sensor with calibrated digital signal output, its precision humidity
is±5%RH, temperature is±2℃, range humidity is 20 to 90%RH, and temperature is 0 to 50℃. The temperature
and humidity sensor applies dedicated digital module acquisition technology and temperature and humidity sensing
technology to ensure extremely high reliability and excellent long-term stability of the product.

The temperature and humidity sensor includes a resistive-type humidity measurement and an NTC temperature mea-
surement component, which is very suitable for temperature and humidity measurement applications where accuracy
and real-time performance are not required. The operating voltage is in the range of 3.3V to 5.5V.

The temperature and humidity sensor has three pins, which are VCCGND and S. S is the pin for data output, using
serial communication.

Single bus format definition of Temperature and Humidity Sensor

498 Chapter 7. Python Project

keyestudio WiKi

De-
scrip-
tion

Definition

Start
signal

Microprocessor pulls data bus (SDA) down at least 18ms for a period of time(Maximum is 30ms), noti-
fying the sensor to prepare data.

Re-
sponse
signal

The sensor pulls the data bus (SDA) low for 83µs, and then pulls up for 87µs to respond to the host’s start
signal.

Hu-
midity

The high humidity is an integer part of the humidity data, and the low humidity is a fractional part of the
humidity data.

Tem-
pera-
ture

The high temperature is the integer part of the temperature data, the low temperature is the fractional part
of the temperature data. And the low temperature Bit8 is 1, indicating a negative temperature, otherwise,
it is a positive temperature.

Parity
bit

Parity bit=Humidity high bit+ Humidity low bit+temperature high bit+temperature low bit

Data sequence diagram of Temperature and Humidity Sensor
When MCU sends a start signal, the Temperature and Humidity Sensor changes from the low-power-consumption
mode to the high-speed mode, waiting for MCU completing the start signal. Once it is completed, the Temperature and
Humidity Sensor sends a response signal of 40-bit data and triggers a signal acquisition.

The signal is sent as shown in the figure:

Combined with the code, you can understand better.

The XHT11 temperature and humidity sensor can easily add temperature and humidity data to your DIY electronic
projects. It is perfect for remote weather stations, home environmental control systems, and farm or garden monitoring
systems.

Specification:
• Working voltage: +5V

• Temperature range: 0°C to 50°C, error of ± 2°C

• Humidity range: 20% to 90% RH,± 5% RH error

• Interface: Digital interface

Schematic diagram of Temperature and Humidity Sensor:

7.30. Project 29Temperature Humidity Meter 499

keyestudio WiKi

7.30.4 4.Read temperature and humidity value

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

500 Chapter 7. Python Project

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 29Temperature Humidity Meter”, and
then double left-click “Project_29.1_Detect_Temperature_Humidity.py”.

Import machine, time and dht modules.
import machine
import time
import dht

#Associate DHT11 with Pin(13).
DHT = dht.DHT11(machine.Pin(13))

Obtain temperature and humidity data once per second and print them out.
while True:

DHT.measure() # Start DHT11 to measure data once.
Call the built-in function of DHT to obtain temperature
and humidity data and print them in “Shell”.
print('temperature:',DHT.temperature(),'℃','humidity:',DHT.humidity(),'%')

(continues on next page)

7.30. Project 29Temperature Humidity Meter 501

keyestudio WiKi

(continued from previous page)

time.sleep_ms(1000)

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, if the temperature and humidity sensor is incorrectly connected, the following information
is displayed in the “Shell”window. Please make sure your circuit is properly connected.

Click again, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE will print the
temperature and humidity datas in the current surroundings, as shown in the following figure.

Press“Ctrl+C”or click “Stop/Restart backend” to exit the program.

502 Chapter 7. Python Project

keyestudio WiKi

7.30.5 5.Wiring diagram of the thermohygrometer

Now we start to print the values of the temperature and humidity sensor with LCD_128X32_DOT. We will see the
corresponding values on the screen of LCD_128X32_DOT. Let’s get started with this project. Please connect cables
according to the following wiring diagram

7.30. Project 29Temperature Humidity Meter 503

keyestudio WiKi

7.30.6 6.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 29Temperature Humid-
ity Meter”. Select“lcd128_32.py”and“lcd128_32_fonts.py”right-click your mouse to select“Upload to
/”wait for “lcd128_32.py” and “lcd128_32_fonts.py” to be uploaded to ESP32and double left-click
“Project_29.2_Temperature_Humidity_Meter.py”.

504 Chapter 7. Python Project

keyestudio WiKi

7.30. Project 29Temperature Humidity Meter 505

keyestudio WiKi

from machine import Pin
import machine
import dht
import time
import lcd128_32_fonts
from lcd128_32 import lcd128_32

temp = 0
humi = 0

#Associate DHT11 with Pin(13).
DHT = dht.DHT11(Pin(13))

#i2c config
clock_pin = 22
data_pin = 21
bus = 0
i2c_addr = 0x3f
use_i2c = True

def scan_for_devices():
i2c = machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_pin))
devices = i2c.scan()
if devices:

for d in devices:
print(hex(d))

else:
print('no i2c devices')

try:
while True:

(continues on next page)

506 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

DHT.measure()
temp = int(DHT.temperature())
humi = int(DHT.humidity())
if use_i2c:

scan_for_devices()
lcd = lcd128_32(data_pin, clock_pin, bus, i2c_addr)

lcd.Clear()
lcd.Cursor(0, 0)
lcd.Display("temper:")
lcd.Cursor(0, 8)
lcd.Display(str(temp))
lcd.Cursor(0, 11)
lcd.Display("C")
lcd.Cursor(2, 0)
lcd.Display("Humid:")
lcd.Cursor(2, 7)
lcd.Display(str(humi))
lcd.Cursor(2, 10)
lcd.Display("%")
time.sleep(0.1)

except:
pass

7.30.7 7.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the LCD 128X32 DOT will display
temperature and humidity value in the current environment.

7.30. Project 29Temperature Humidity Meter 507

keyestudio WiKi

Press“Ctrl+C”or click “Stop/Restart backend” to exit the program.

7.31 Project 30Ultrasonic Ranger

7.31.1 Introduction

The HC-SR04 ultrasonic sensor is a very affordable distance sensor, mainly used for obstacle avoidance in various
robotic projects. It is also used for water level sensing and even as a parking sensor. We treat the ultrasonic sensors as
bat’s eyes, in the dark, bats can still identify objects in front of them and directions through ultrasound.

In this project, we use ESP32 to control a ultrasonic sensor and LEDs to simulate ultrasonic rangefinder.

508 Chapter 7. Python Project

keyestudio WiKi

7.31.2 Components

ESP32*1 Breadboard*1 Ultrasonic Sensor*1 Red LED*4

M-F Dupont Wires 220Resistor*4 Jumper Wires USB Cable*1

7.31.3 Component knowledge

HC-SR04 Ultrasonic Sensor :
Like bats, sonar is used to determine the distance to an object. It provides accurate non-contact range detection, high-
precision and stable readings.

Its operation is not affected by sunlight or black materials, just like a precision camera (acoustically softer materials
like cloth are difficult to detect). It has an ultrasonic transmitter and receiver.

In front of the ultrasonic sensor are two metal cylinders, these are the converters. The converters convert the mechanical
energy into an electrical signal. In the ultrasonic sensor, there are transmitting converters and receiving converters.
The transmitting converter converts the electric signal into an ultrasonic pulse, and the receiving converter converts the
reflected ultrasonic pulse back to an electric signal. If you look at the back of the ultrasonic sensor, you will see an IC
behind the transmitting converter, which controls the transmitting converter.

There is also an IC behind the receiving converter, which is a quad operational amplifier that amplifies the signal
generated by the receiving converter into a signal large enough to be transmitted to the Microcontroller.

7.31. Project 30Ultrasonic Ranger 509

keyestudio WiKi

Sequence diagrams:
The figure shows the sequence diagram of the HC-SR04. To start the measurement, the Trig of SR04 must receive at
least 10us high pulse (5V), which will activate the sensor to emit 8 cycles of 40kHz ultrasonic pulses, and wait for the
reflected ultrasonic pulses. When the sensor detects ultrasound from the receiver, it sets the Echo pin to high (5V) and
delays it by one cycle (width), proportional to the distance. To get the distance, measure the width of the Echo pin.

Time = Echo pulse width, its unit is“us” (microseconds)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑚) = 𝑡𝑖𝑚𝑒/58

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖𝑛𝑐ℎ) = 𝑡𝑖𝑚𝑒/148

7.31.4 Read the distance value of the ultrasonic sensor:

We will start with a simple ultrasonic ranging and print the measured distance.

The HC-SR04 ultrasonic sensor has four pins, they are Vcc, Trig, Echo and GND.

510 Chapter 7. Python Project

keyestudio WiKi

The Vcc pin provides the power source for generating ultrasonic pulses and is connected to Vcc (+5V).

The GND pin is grounded.

The Trig pin is where the Arduino sends a signal to start the ultrasonic pulse.

The Echo pin is where the ultrasonic sensor sends information about the duration of the ultrasonic pulse to the Control
board.

Wiring as shown below:

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

7.31. Project 30Ultrasonic Ranger 511

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 30Ultrasonic Ranger”, and then double
left-click“Project 30.1_Ultrasonic_Ranging.py”.

from machine import Pin
import time

Define the control pins of the ultrasonic ranging module.
Trig = Pin(13, Pin.OUT, 0)
Echo = Pin(14, Pin.IN, 0)

distance = 0 # Define the initial distance to be 0.
soundVelocity = 340 #Set the speed of sound.

The getDistance() function is used to drive the ultrasonic module to measure distance,
the Trig pin keeps at high level for 10us to start the ultrasonic module.
Echo.value() is used to read the status of ultrasonic module’s Echo pin,
and then use timestamp function of the time module to calculate the duration of Echo

(continues on next page)

512 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

pin’s high level,calculate the measured distance based on time and return the value.
def getDistance():

Trig.value(1)
time.sleep_us(10)
Trig.value(0)
while not Echo.value():

pass
pingStart = time.ticks_us()
while Echo.value():

pass
pingStop = time.ticks_us()
pingTime = time.ticks_diff(pingStop, pingStart) // 2
distance = int(soundVelocity * pingTime // 10000)
return distance

Delay for 2 seconds and wait for the ultrasonic module to stabilize,
Print data obtained from ultrasonic module every 500 milliseconds.
time.sleep(2)
while True:

time.sleep_ms(500)
distance = getDistance()
print("Distance: ", distance, "cm")

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you can use it to measure the distance between the
ultrasonic sensor and the object.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

7.31. Project 30Ultrasonic Ranger 513

keyestudio WiKi

7.31.5 Wiring diagram of the ultrasonic rangefinder

Next, we will use ESP32 to control an ultrasonic sensor and 4 LEDs to simulate ultrasonic rangefinder. Connect the
line as shown below

514 Chapter 7. Python Project

keyestudio WiKi

7.31.6 Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

7.31. Project 30Ultrasonic Ranger 515

keyestudio WiKi

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 30Ultrasonic Ranger”and double left-
click “Project_30.2_Ultrasonic_Ranger.py”.

from machine import Pin
import time

#Define the pins of four leds.
led1 = Pin(4, Pin.OUT)
led2 = Pin(0, Pin.OUT)
led3 = Pin(2, Pin.OUT)
led4 = Pin(15, Pin.OUT)

Define the control pins of the ultrasonic ranging module.
Trig = Pin(13, Pin.OUT, 0)
Echo = Pin(14, Pin.IN, 0)

distance = 0 # Define the initial distance to be 0.
(continues on next page)

516 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

soundVelocity = 340 #Set the speed of sound.

The getDistance() function is used to drive the ultrasonic module to measure distance,
the Trig pin keeps at high level for 10us to start the ultrasonic module.
Echo.value() is used to read the status of ultrasonic module’s Echo pin,
and then use timestamp function of the time module to calculate the duration of Echo
pin’s high level,calculate the measured distance based on time and return the value.
def getDistance():

Trig.value(1)
time.sleep_us(10)
Trig.value(0)
while not Echo.value():

pass
pingStart = time.ticks_us()
while Echo.value():

pass
pingStop = time.ticks_us()
pingTime = time.ticks_diff(pingStop, pingStart) // 2
distance = int(soundVelocity * pingTime // 10000)
return distance

Delay for 2 seconds and wait for the ultrasonic module to stabilize,
Print data obtained from ultrasonic module every 500 milliseconds.
time.sleep(2)
while True:

time.sleep_ms(500)
distance = getDistance()
print("Distance: ", distance, "cm")
if distance <= 5:

led1.value(1)
else:

led1.value(0)
if distance <= 10:

led2.value(1)
else:

led2.value(0)
if distance <= 15:

led3.value(1)
else:

led3.value(0)
if distance <= 20:

led4.value(1)
else:

led4.value(0)

7.31. Project 30Ultrasonic Ranger 517

keyestudio WiKi

7.31.7 Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE will
print the distance between the ultrasonic sensor and the object, and the corresponding LED will light up when we move
our hand in front of the ultrasonic sensor.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

518 Chapter 7. Python Project

keyestudio WiKi

7.32 Project 31Temperature Instrument

7.32.1 Introduction

Thermistor is a kind of resistor whose resistance depends on temperature changes, which is widely used in gardening,
home alarm system and other devices. Therefore, we can use the feature to make a temperature instrument.

7.32.2 Components

ESP32*1 Breadboard*1 Thermistor*1 10KResistor*1

M-F Dupont Wires LCD 128X32 DOT*1 Jumper Wires USB Cable*1

7.32.3 Component knowledge

Thermistor:
A Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance of the Ther-
mistor will change. We can take advantage of this characteristic by using a Thermistor to detect temperature intensity.
A Thermistor and its electronic symbol are shown below:

The relationship between resistance value and temperature of a thermistor is

7.32. Project 31Temperature Instrument 519

keyestudio WiKi

Rt is the thermistor resistance under T2 temperature;

R is the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of e;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.

For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.

The circuit connection method of the Thermistor is similar to photoresistor, as the following

We can use the value measured by the ADC converter to obtain the resistance value of Thermistor, and then we can use
the formula to obtain the temperature value. Therefore, the temperature formula can be derived as:

520 Chapter 7. Python Project

keyestudio WiKi

7.32.4 Read the value of the Thermistor

First we will learn the thermistor to read the current ADC value, voltage value and temperature value and print them
out. Please connect the wires according to the wiring diagram below

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 31Temperature Instrument”, and then

7.32. Project 31Temperature Instrument 521

keyestudio WiKi

double left-click “Project_31.1_Read_the_thermistor_analog_value.py”.

from machine import Pin, ADC
import time
import math

#Set ADC
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

try:
while True:

adcValue = adc.read()
voltage = adcValue / 4095 * 3.3
Rt = 10 * voltage / (3.3-voltage)
tempK = (1 / (1 / (273.15+25) + (math.log(Rt/10)) / 3950))
tempC = (tempK - 273.15)
print("ADC value:",adcValue," Voltage:",voltage,"V"," Temperature: ",tempC,"C

→˓");
time.sleep(1)

except:
pass

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

522 Chapter 7. Python Project

keyestudio WiKi

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE
will continuously display the thermistor’s current ADC value, voltage value and temperature value. Try pinching the
thermistor with your index finger and thumb (don’t touch wires) for a while, and you will see the temperature increase.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

7.32. Project 31Temperature Instrument 523

keyestudio WiKi

7.32.5 Wiring diagram of the temperature instrument

524 Chapter 7. Python Project

keyestudio WiKi

7.32.6 Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open “Thonny”, click “This computer”→ “D:”→ “2. Python Projects”→ “Project 31Temperature Instrument”. Select
“lcd128_32.py” and “lcd128_32_fonts.py”, right-click your mouse to select “Upload to /”, wait for “lcd128_32.py” and
“lcd128_32_fonts.py” to be uploaded to ESP32, and double left-click “Project_31.2_Temperature_Instrument.py”.

7.32. Project 31Temperature Instrument 525

keyestudio WiKi

from machine import Pin, ADC, I2C
import machine
import time
import math
import lcd128_32_fonts
from lcd128_32 import lcd128_32

#Set ADC
(continues on next page)

526 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

#i2c config
clock_pin = 22
data_pin = 21
bus = 0
i2c_addr = 0x3f
use_i2c = True

def scan_for_devices():
i2c = machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_pin))
devices = i2c.scan()
if devices:

for d in devices:
print(hex(d))

else:
print('no i2c devices')

try:
while True:

adcValue = adc.read()
voltage = adcValue / 4095 * 3.3
Rt = 10 * voltage / (3.3-voltage)
tempK = (1 / (1 / (273.15+25) + (math.log(Rt/10)) / 3950))
tempC = int(tempK - 273.15)
if use_i2c:

scan_for_devices()
lcd = lcd128_32(data_pin, clock_pin, bus, i2c_addr)

lcd.Clear()
lcd.Cursor(0, 0)
lcd.Display("Voltage:")
lcd.Cursor(0, 8)
lcd.Display(str(voltage))
lcd.Cursor(0, 20)
lcd.Display("V")
lcd.Cursor(2, 0)
lcd.Display("Temperature:")
lcd.Cursor(2, 12)
lcd.Display(str(tempC))
lcd.Cursor(2, 15)
lcd.Display("C")
time.sleep(0.5)

except:
pass

7.32. Project 31Temperature Instrument 527

keyestudio WiKi

7.32.7 Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the LCD 128X32 DOT displays the
voltage value of the thermistor and the temperature value in the current environment.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

528 Chapter 7. Python Project

keyestudio WiKi

7.33 Project 32RFID

7.33.1 Introduction

Nowadays, many residential districts use this function to open the door by swiping the card, which is very convenient.
In this Project, we will learn how to use RFID(radio frequency identification) wireless communication technology and
read and write the key chain card (white card) and control the steering gear rotation by RFID-MFRC522 module.

7.33.2 Components

ESP32*1 Breadboard*1 RFID-RC522 Module*1

M-F Dupont Wires Servo*1 White Card*1

Key Chain*1 Jumper wires USB Cable*1

7.33.3 Component knowledge

RFID
RFID (Radio Frequency Identification) is a wireless communication technology. A complete RFID system is generally
composed of the responder and reader. Generally, we use tags as responders, and each tag has a unique code, which is
attached to the object to identify the target object. The reader is a device for reading (or writing) tag information.

Products derived from RFID technology can be divided into three categories: passive RFID products, active RFID
products and semi active RFID products. And Passive RFID products are the earliest, the most mature and most widely
used products in the market among others. It can be seen everywhere in our daily life such as, the bus card, dining
card, bank card, hotel access cards, etc., and all of these belong to close-range contact recognition. The main operating
frequency of Passive RFID products are: 125KHZ (low frequency), 13.56MHZ (high frequency), 433MHZ (ultrahigh
frequency) and 915MHZ (ultrahigh frequency). Active and semi active RFID products work at higher frequencies.

The RFID module we use is a passive RFID product with the operating frequency of 13.56MHz.

RFID-RC522 Module

7.33. Project 32RFID 529

keyestudio WiKi

The MFRC522 is a highly integrated reader/writer IC for contactless communication at 13.56MHz. The MFRC522’s
internal transmitter is able to drive a reader/writer antenna designed to communicate with ISO/IEC 14443 A/MIFARE
cards and transponders without additional active circuitry. The receiver module provides a robust and efficient imple-
mentation for demodulating and decoding signals from ISO/IEC 14443 A/MIFARE compatible cards and transponders.
The digital module manages the complete ISO/IEC 14443A framing and error detection (parity and CRC) functionality.

This RFID Module uses MFRC522 as the control chip and adopts I2C (Inter-Integrated Circuit) interface.

Specifications:
• Operating voltage: DC 3.3V-5V

• Operating current: 13—100mA/DC 5V

• Idling current: 10-13mA/DC 5V

• Sleep current: <80uA

• Peak current: <100mA

• Operating frequency: 13.56MHz

• Maximum power: 0.5W

• Supported card types: mifare1 S50, mifare1 S70, mifare UltraLight, mifare Pro, mifare Desfire.

• Environmental operating temperature: -20 to 80 degrees Celsius.

• Environment storage temperature: -40 to 85 degrees Celsius.

• Relative Humidity: 5% to 95%.

• Data transfer rate: The maximum is 10Mbit/s.

7.33.4 RFID Read UID

We will read the UNIQUE ID number (UID) of the RFID card and identify the type of the RFID card, and display the
relevant information through the serial port. The wiring diagram is shown below

530 Chapter 7. Python Project

keyestudio WiKi

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open “Thonny”, click “This computer” → “D:” → “2. Python Projects” → “Project 32RFID”.

Select “mfrc522_config.py”, “mfrc522_i2c.py” and “soft_iic.py”, right-click your mouse to select “Upload to /”,
wait for “mfrc522_config.py”, “mfrc522_i2c.py” and “soft_iic.py” to be uploaded to ESP32, and double left-click
“Project_32.1_RFID_Read_UID.py”.

7.33. Project 32RFID 531

keyestudio WiKi

532 Chapter 7. Python Project

keyestudio WiKi

import machine
import time
from mfrc522_i2c import mfrc522

#i2c config
(continues on next page)

7.33. Project 32RFID 533

keyestudio WiKi

(continued from previous page)

addr = 0x28
scl = 22
sda = 21

rc522 = mfrc522(scl, sda, addr)
rc522.PCD_Init()
rc522.ShowReaderDetails() # Show details of PCD - MFRC522 Card Reader details

while True:
if rc522.PICC_IsNewCardPresent():

#print("Is new card present!")
if rc522.PICC_ReadCardSerial() == True:

print("Card UID:")
print(rc522.uid.uidByte[0 : rc522.uid.size])

#time.sleep(1)

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

Click “Run current script”, the code starts to be executed and you’ll see that place the door card and key chain close
to the module sensor area respectively, the “Shell” window of Thonny IDE will display the card number and key chain

value respectively, as shown below. Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

534 Chapter 7. Python Project

keyestudio WiKi

Note: the door card value and key chain value may be different for different RRFID -RC522 door cards and key chains.

7.33.5 Wiring diagram of the RFID MFRC522

Now we use the RFID -RC522 module, white card/key chain and Servo to simulate an intelligent access control system.
When the white card/key chain close to the RFID -RC522 module induction area, the servo rotates. Wiring according
to the figure below

7.33. Project 32RFID 535

keyestudio WiKi

7.33.6 Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”, click“This computer”→“D:”→“2. Python Projects”→“Project 32RFID”. Select
“mfrc522_config.py”, “mfrc522_i2c.py” and “soft_iic.py”, click your mouse to select “Upload to /”,
wait for “mfrc522_config.py”, “mfrc522_i2c.py” and “soft_iic.py” to be uploaded to ESP32, and click
“Project_32.2_RFID_Control_Servo.py”.

536 Chapter 7. Python Project

keyestudio WiKi

7.33. Project 32RFID 537

keyestudio WiKi

from machine import Pin, PWM
import time
from mfrc522_i2c import mfrc522

#Define GPIO15’s output frequency as 50Hz and assign them to PWM.
(continues on next page)

538 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

servoPin = Pin(15)
pwm = PWM(servoPin, freq=50)

#i2c config
addr = 0x28
scl = 22
sda = 21

rc522 = mfrc522(scl, sda, addr)
rc522.PCD_Init()
rc522.ShowReaderDetails() # Show details of PCD - MFRC522 Card Reader details

uid1 = [147, 173, 247, 32]
uid2 = [57, 182, 70, 194]

pwm = PWM(servoPin, freq=50)
pwm.duty(128)
time.sleep(1)

while True:
if rc522.PICC_IsNewCardPresent():

#print("Is new card present!")
if rc522.PICC_ReadCardSerial() == True:

print("Card UID:", end=' ')
print(rc522.uid.uidByte[0 : rc522.uid.size])
if rc522.uid.uidByte[0 : rc522.uid.size] == uid1 or rc522.uid.uidByte[0 :␣

→˓rc522.uid.size] == uid2:
pwm = PWM(servoPin, freq=50)
pwm.duty(25)

else :
pwm = PWM(servoPin, freq=50)
pwm.duty(128)

time.sleep(500)

Note: Different RFID-RC522 modules, ID cards and key chains may cause different uid1 values and uid2 values. The
UID1 and UID2 values of the white card and key chain read by your RRFID RC522 module can be replaced by the
corresponding values in the program code. If not, click “Run current script” to run the code may cause your own
white card and key chain to fail to control the servo.

For example: You can replace the UID1 and UID2 values in the program

code with your own white card and key chain values.

7.33. Project 32RFID 539

keyestudio WiKi

7.33.7 Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that when using the white card or a key card
swiping, the “Shell” window of Thonny IDE displays the card number value respectively, and at the same time, the
servo rotates to the corresponding angle to simulate opening the door.

Press“Ctrl+C”or click “Stop/Restart backend” to exit the program.

540 Chapter 7. Python Project

keyestudio WiKi

7.34 Project 33Keypad Door

7.34.1 Introduction

Commonly used digital button sensor, one button uses an IO port. However, it will occupy too many IO ports when we
need a lot of buttons. In order to save the use of IO ports, the multiple buttons are made into a matrix type, through the
control of the line and row to achieve less IO port control of multiple buttons. In this project, we will learn ESP32 and
thin film 4*4 matrix keyboard control a servo and a buzzer.

7.34. Project 33Keypad Door 541

keyestudio WiKi

7.34.2 Components

ESP32*1 Breadboard*1 Servo*1 Active Buzzer*1

44 Membrane Matrix Keyboard1 Jumper Wires USB Cable*1 1kResistor*1

NPN transistor(S8050)*1

7.34.3 Component knowledge

4*4 Matrix keyboard
A Keypad Matrix is a device that integrates a number of keys in one package. As is shown below, a 4x4 Keypad Matrix
integrates 16 keys:

Similar to the integration of an LED Matrix, the 4x4 Keypad Matrix has each row of keys connected with one pin and
this is the same for the columns. Such efficient connections reduce the number of processor ports required. The internal
circuit of the Keypad Matrix is shown below.

542 Chapter 7. Python Project

keyestudio WiKi

The method of usage is similar to the Matrix LED, by using a row or column scanning method to detect the state of
each key’s position by column and row. Take column scanning method as an example, send low level to the first 4
column (Pin4), detect level state of row 1, 2, 3, 4 to judge whether the key A, B, C, D are pressed. Then send low level
to column3, 2, 1 in turn to detect whether other keys are pressed. By this means, you can get the state of all of the keys.

7.34.4 Read the key value of the 4*4 matrix keyboard

We start with a simple code to read the values of the 4*4 matrix keyboard and print them in the serial monitor. Its
wiring diagram is shown below

7.34. Project 33Keypad Door 543

keyestudio WiKi

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

544 Chapter 7. Python Project

keyestudio WiKi

Open“Thonny”, click “This computer”→“D:”→“2. Python Projects”→“Project 33Keypad Door”. Se-
lect “keypad.py”, select “Upload to /”, wait for “keypad.py” to be uploaded to ESP32, and click
“Project_33.1_4x4_Matrix_Keypad_Display.py”.

7.34. Project 33Keypad Door 545

keyestudio WiKi

Import keypad module.
from keypad import KeyPad
import time
Associate the keypad module to ESP32 pins.
keyPad = KeyPad(22, 21, 19, 18, 17, 16, 4, 0)
#Call function keyPan.scan() to obtain the value of the pressed key. Once it is obtained,
→˓ print it out.
def key():

keyvalue = keyPad.scan()
if keyvalue != None:

print(keyvalue, end="\t")
time.sleep_ms(300)
return keyvalue

while True:
key()

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

546 Chapter 7. Python Project

keyestudio WiKi

Click “Run current script”, the code starts to be executed and you’ll see that press the keyboard and the “Shell”

window of Thonny IDE prints the corresponding key value, as shown below. Press“Ctrl+C”or click “Stop/Restart
backend” to exit the program.

7.34. Project 33Keypad Door 547

keyestudio WiKi

7.34.5 Wiring diagram of the Keypad Door

In the last experiment, we have known the key values of the 4*4 matrix keyboard. Next, we use it as the keyboard to
control a servo and a buzzer.

548 Chapter 7. Python Project

keyestudio WiKi

7.34.6 Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open “Thonny”, click“This computer”→“D:”→“2. Python Projects”→“Project 33 Keypad Door”. Select “keypad.py”
and “myservo.py”, click your mouse to select “Upload to /”, wait for “keypad.py” and “myservo.py” to be uploaded to
ESP32, and , click “Project_33.2_Keypad_Door.py”.

7.34. Project 33Keypad Door 549

keyestudio WiKi

from myservo import myServo #Import myservo module.
from keypad import KeyPad
from machine import Pin
import time

keyPad = KeyPad(22, 21, 19, 18, 17, 16, 4, 0)
(continues on next page)

550 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

servo=myServo(15)
servo.myServoWriteAngle(0)
time.sleep_ms(1000)
activeBuzzer = Pin(2, Pin.OUT)

Define an array and set the password.
passWord = "1234"
keyIn = ""
def key():

keyvalue = keyPad.scan()
if keyvalue != None:

print('Your input:', keyvalue)
time.sleep_ms(200)
return keyvalue

while True:
Each time a key is pressed, the buzzer will short beep once,
and the key value of the key will be stored in the keyIn array.

keydata = key()
if keydata != None:

activeBuzzer.value(1)
time.sleep_ms(100)
activeBuzzer.value(0)
keyIn += keydata

When 4 keys are pressed, it will judge whether the password is correct.
If it is correct, the servo will rotate 90 degrees, and then turn back after 1 second.
If the password is wrong, the buzzer will long beep once and the keyInNum value will␣
→˓be cleared.
if len(keyIn) == 4:

if keyIn == passWord:
print("passWord right!")
servo.myServoWriteAngle(90)
time.sleep_ms(1000)
servo.myServoWriteAngle(0)

else:
print("passWord error!")
activeBuzzer.value(1)
time.sleep_ms(1000)
activeBuzzer.value(0)

keyIn = ""

7.34. Project 33Keypad Door 551

keyestudio WiKi

7.34.7 Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

Click “Run current script”, the code starts to be executed and you’ll see that press the keypad to input password
with 4 characters. If the input is correct(Correct password :1234), the servo will move to a certain degree, and then
return to the original position. If the input is wrong, an input error alarm will be generated.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

552 Chapter 7. Python Project

keyestudio WiKi

7.35 Project 34IR Control Sound and LED

7.35.1 Introduction

An infrared(IR) remote control is a low-cost and easy-to-use wireless communication technology. IR light is very
similar to visible light, except that its wavelength is slightly longer. This means that infrared rays cannot be detected by
the human eye, which is perfect for wireless communication. For example, when you press a button on the TV remote
control, an infrared LED will switch on and off repeatedly at a frequency of 38,000 times per second, transmitting
information (such as volume or channel control) to the infrared sensor on the TV.

We’ll start by explaining how common infrared communication protocols work. Then we will start the project with a
remote control and an infrared receiver component.

7.35. Project 34IR Control Sound and LED 553

keyestudio WiKi

7.35.2 Components

ESP32*1 Breadboard*1 IR Receiver *1 RGB LED*1

IR Remote Controller*1 Active buzzer*1 10KResistor*1 220Resistor*3

NPN transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

7.35.3 Component knowledge

Infrared Remote
An infrared (IR) remote control is a device with a certain number of buttons. Pressing down different buttons will
make the infrared emission tube, which is located in the front of the remote control, send infrared ray with different
command. Infrared remote control technology is widely used in electronic products such as TV, airconditioning, etc.
Thus making it possible for you to switch TV programs and adjust the temperature of the air conditioning when away
from them. The remote control we use is shown below:

The infrared remote controller adopts NEC code and the signal cycle is 110ms.

554 Chapter 7. Python Project

keyestudio WiKi

Infrared receiverreceiver is a component which can receive the infrared light, so we can use it to detect the signal
emitted by the infrared remote control.

The infrared receiver demodules the received infrared signal and converts it back to binary, then passes the information
to the microcontroller.

Infrared signal modulation process diagram

7.35. Project 34IR Control Sound and LED 555

keyestudio WiKi

NEC Infrared communication protocol
NEC Protocol:
To my knowledge the protocol I describe here was developed by NEC (Now Renesas). I’ve seen very similar protocol
descriptions on the internet, and there the protocol is called Japanese Format. I do admit that I don’t know exactly
who developed it. What I do know is that it was used in my late VCR produced by Sanyo and was marketed under the
name of Fisher. NEC manufactured the remote control IC. This description was taken from my VCR’s service manual.
Those were the days, when service manuals were filled with useful information!

Features:
• 8 bit address and 8 bit command length.

• Extended mode available, doubling the address size.

• Address and command are transmitted twice for reliability.

• Pulse distance modulation.

• Carrier frequency of 38kHz.

• Bit time of 1.125ms or 2.25ms.

Modulation:

The NEC protocol uses pulse distance encoding of the bits. Each pulse is a 560µs long 38kHz carrier burst (about
21 cycles). A logical “1” takes 2.25ms to transmit, while a logical “0” is only half of that, being 1.125ms. The
recommended carrier duty-cycle is 1/4 or 1/3.

Protocol:

556 Chapter 7. Python Project

keyestudio WiKi

The picture above shows a typical pulse train of the NEC protocol. With this protocol the LSB is transmitted first. In
this case Address 59𝑎𝑛𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑16 is transmitted. A message is started by a 9ms AGC burst, which was used to set
the gain of the earlier IR receivers. This AGC burst is then followed by a 4.5ms space, which is then followed by the
Address and Command. Address and Command are transmitted twice. The second time all bits are inverted and can
be used for verification of the received message. The total transmission time is constant because every bit is repeated
with its inverted length. If you’re not interested in this reliability you can ignore the inverted values, or you can expand
the Address and Command to 16 bits each! Keep in mind that one extra 560µs burst has to follow at the end of the
message in order to be able to determine the value of the last bit.

A command is transmitted only once, even when the key on the remote control remains pressed. Every 110ms a repeat
code is transmitted for as long as the key remains down. This repeat code is simply a 9ms AGC pulse followed by a
2.25ms space and a 560µs burst.

Extended NEC protocol:
The NEC protocol is so widely used that soon all possible addresses were used up. By sacrificing the address redun-
dancy the address range was extended from 256 possible values to approximately 65000 different values. This way the
address range was extended from 8 bits to 16 bits without changing any other property of the protocol.

By extending the address range this way the total message time is no longer constant. It now depends on the total
number of 1’s and 0’s in the message. If you want to keep the total message time constant you’ll have to make sure
the number 1’s in the address field is 8 (it automatically means that the number of 0’s is also 8). This will reduce the
maximum number of different addresses to just about 13000.

The command redundancy is still preserved. Therefore each address can still handle 256 different commands.

Keep in mind that 256 address values of the extended protocol are invalid because they are in fact normal NEC protocol
addresses. Whenever the low byte is the exact inverse of the high byte it is not a valid extended address.

7.35. Project 34IR Control Sound and LED 557

keyestudio WiKi

7.35.4 Decoded infrared signal

We connect the infrared receiving element to the ESP32, according to the wiring diagram below:

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

If you haven’t downloaded the code file, please click on the link to download it:Download Python Codes

Open “Thonny”, click“This computer”→“D:”→“2. Python Projects”→“Project 34IR Control Sound and LED”.

558 Chapter 7. Python Project

keyestudio WiKi

Select “irrecvdata.py”, click your mouse to select “Upload to /”, wait for “irrecvdata.py” to be uploaded to ESP32, and
click “Project_34.1_Decoded_IR_Signal.py”.

Import the infrared decoder.
from irrecvdata import irGetCMD

(continues on next page)

7.35. Project 34IR Control Sound and LED 559

keyestudio WiKi

(continued from previous page)

Associate the infrared decoder with GP0.
recvPin = irGetCMD(0)

#When infrared key value is obtained, print it out in"Shell".
try:

while True:
irValue = recvPin.ir_read() #Call ir_read() to read the value of the pressed key␣

→˓and assign it to IRValue.
if irValue:

print(irValue)
except:

pass

Make sure the ESP32 has been connected to the computer, click

media/27451c8a9c13e29d02bc0f5831cfaf1f.png

“Stop/Restart backend”.

Click

media/da852227207616ccd9aff28f19e02690.png

“Run current script”, the code starts to be executed and you’ll see that aim the infrared remote
control transmitter at the infrared receiving head, press the button on the infrared controller, and the “Shell” window
of Thonny IDE prints the current received key code values.

560 Chapter 7. Python Project

keyestudio WiKi

Press“Ctrl+C”or click

media/27451c8a9c13e29d02bc0f5831cfaf1f.png

“Stop/Restart backend”to exit the program.

7.35. Project 34IR Control Sound and LED 561

keyestudio WiKi

Write down the code associated with each button, because you will need that information later.

7.35.5 Wiring diagram of the infrared remote control

562 Chapter 7. Python Project

keyestudio WiKi

7.35.6 Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”, click “This computer” → “D:” → “2. Python Projects” → “Project 34IR Control Sound and LED”.
Select “irrecvdata.py”, click your mouse to select “Upload to /”, wait for “irrecvdata.py” to be uploaded to ESP32, and
click “Project_34.2_IR_Control_Sound_And_LED.py”.

7.35. Project 34IR Control Sound and LED 563

keyestudio WiKi

from machine import Pin,PWM
import time
from irrecvdata import irGetCMD

#Set RGB light interface and frequency
rgb_r = PWM(Pin(22))
rgb_g = PWM(Pin(21))
rgb_b = PWM(Pin(4))
rgb_r.freq(1000)
rgb_g.freq(1000)
rgb_b.freq(1000)
rgb_r.duty(0)
rgb_g.duty(0)
rgb_b.duty(0)
Initialize the buzzer pin
buzzer=Pin(15, Pin.OUT)

#Configure infrared receiving pin and library
recvPin = irGetCMD(0)

while True:
irValue = recvPin.ir_read() # Read remote control data

Determine whether there is a button that meets the needs
if irValue:

print(irValue)
buzzer.value(1)
time.sleep(0.1)
buzzer.value(0)
if irValue == '0xff6897': #1

(continues on next page)

564 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

rgb_r.duty(1023)
rgb_g.duty(0)
rgb_b.duty(0)
print('1')

elif irValue == '0xff9867': #2
rgb_r.duty(0)
rgb_g.duty(1023)
rgb_b.duty(0)
print('2')

elif irValue == '0xffb04f': #3
rgb_r.duty(0)
rgb_g.duty(0)
rgb_b.duty(1023)
print('3')

elif irValue == '0xff30cf': #4
rgb_r.duty(1023)
rgb_g.duty(1023)
rgb_b.duty(0)
print('4')

elif irValue == '0xff18e7': #5
rgb_r.duty(1023)
rgb_g.duty(0)
rgb_b.duty(1023)
print('5')

elif irValue == '0xff7a85': #6
rgb_r.duty(0)
rgb_g.duty(1023)
rgb_b.duty(1023)
print('6')

elif irValue == '0xff10ef': #7
rgb_r.duty(1023)
rgb_g.duty(1023)
rgb_b.duty(1023)
print('7')

else:
rgb_r.duty(0)
rgb_g.duty(0)
rgb_b.duty(0)

7.35.7 Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

7.35. Project 34IR Control Sound and LED 565

keyestudio WiKi

Click “Run current script”, the code starts to be executed and you’ll see that press the 1 to 7 key of the infrared remote
controller, the buzzer will sound once, and the RGB light will be red, green, blue, yellow ,red, blue ,green and white
respectively. Press another key (except 1 to 7 key), and the RGB light will go off.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

Note When the code is running, the following prompt appears, you just need to click “Stop/Restart backend”, then

566 Chapter 7. Python Project

keyestudio WiKi

click “Run current script” to make the code run again.

(Note: Before use, we need to remove the plastic sheet from the bottom of the infrared remote controller.)

7.36 Project 35WiFi Station Mode

7.36.1 Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn about ESP32’s WiFi Station mode.

7.36.2 Components

USB Cable*1 ESP32*1

7.36.3 Project wiring

Connect the ESP32 to the USB port on your computer using a USB cable.

7.36. Project 35WiFi Station Mode 567

keyestudio WiKi

7.36.4 Component knowledge

Station mode: When ESP32 selects Station mode, it acts as a WiFi client. It can connect to the router network and
communicate with other devices on the router via WiFi connection. As shown below, the PC is connected to the router,
and if ESP32 wants to communicate with the PC, it needs to be connected to the router.

568 Chapter 7. Python Project

keyestudio WiKi

7.36.5 Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”, click “This computer” → “D:” → “2. Python Projects” → “Project 35WiFi Station Mode”, and double
left-click “Project_35_WiFi_Station_Mode.py”.

import time
import network # Import network module.

ssidRouter = 'ChinaNet-2.4G-0DF0' # Enter the router name
passwordRouter = 'ChinaNet@233' # Enter the router password

def STA_Setup(ssidRouter,passwordRouter):
print("Setup start")
sta_if = network.WLAN(network.STA_IF) # Set ESP32 in Station mode.

(continues on next page)

7.36. Project 35WiFi Station Mode 569

keyestudio WiKi

(continued from previous page)

if not sta_if.isconnected():
print('connecting to',ssidRouter)

Activate ESP32’s Station mode, initiate a connection request to the router
and enter the password to connect.

sta_if.active(True)
sta_if.connect(ssidRouter,passwordRouter)

#Wait for ESP32 to connect to router until they connect to each other successfully. ␣
→˓

while not sta_if.isconnected():
pass

Print the IP address assigned to ESP32-WROVER in “Shell”.
print('Connected, IP address:', sta_if.ifconfig())
print("Setup End")

try:
STA_Setup(ssidRouter,passwordRouter)

except:
sta_if.disconnect()

7.37 Project result

Because the names and passwords of routers in various places are different, before the code runs, users need to enter
the correct router’s name and password in the box as shown in the illustration above.

After making sure the router name and password are entered correctly, click “Run current script”, the code starts
to be executed and wait for ESP32 to connect to your router and print the IP address assigned by the router to ESP32
in the “Shell” window of Thonny IDE.

570 Chapter 7. Python Project

keyestudio WiKi

7.38 Project 36WiFi AP Mode

7.39 Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn about ESP32’s WiFi AP mode.

7.38. Project 36WiFi AP Mode 571

keyestudio WiKi

7.39.1 Components

USB Cable*1 ESP32*1

7.40 Project wiring

Connect the ESP32 to the USB port on your computer using a USB cable.

7.40.1 Component knowledge

AP mode :
When ESP32 selects AP mode, it creates a hotspot network that is separated from the Internet and waits for other WiFi
devices to connect. As shown in the figure below, ESP32 is used as a hotspot. If a mobile phone or PC wants to
communicate with ESP32, it must be connected to the hotspot of ESP32. Only after a connection is established with
ESP32 can they communicate.

572 Chapter 7. Python Project

keyestudio WiKi

7.40.2 Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 36WiFi AP Mode”, and double left-
click “Project_36_WiFi_AP_Mode.py”.

7.40. Project wiring 573

keyestudio WiKi

import network #Import network module.

#Enter correct router name and password.
ssidAP = 'ESP32_WiFi' #Enter the router name
passwordAP = '12345678' #Enter the router password

local_IP = '192.168.1.147'
gateway = '192.168.1.1'
subnet = '255.255.255.0'
dns = '8.8.8.8'

#Set ESP32 in AP mode.
ap_if = network.WLAN(network.AP_IF)

def AP_Setup(ssidAP,passwordAP):
ap_if.ifconfig([local_IP,gateway,subnet,dns])
print("Setting soft-AP ... ")
ap_if.config(essid=ssidAP,authmode=network.AUTH_WPA_WPA2_PSK, password=passwordAP)
ap_if.active(True)
print('Success, IP address:', ap_if.ifconfig())
print("Setup End\n")

try:
AP_Setup(ssidAP,passwordAP)

except:
print("Failed, please disconnect the power and restart the operation.")
ap_if.disconnect()

574 Chapter 7. Python Project

keyestudio WiKi

7.41 Project result

Before the code runs, you can make any changes to the AP name and password for ESP32 in the box as shown in the
illustration above. Of course, you can leave it alone by default.

Click “Run current script”, the code starts to be executed and open the AP function of ESP32 and print the access
point information in the “Shell” window of Thonny IDE.

Turn on the WiFi scanning function of your phone, and you can see the ssid_AP on ESP32, which is called
“ESP32_Wifi” in this code. You can enter the password “12345678” to connect it or change its AP name and password
by modifying Code.

7.41. Project result 575

keyestudio WiKi

7.42 Project 37WiFi Station+AP Mode

7.42.1 Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn ESP32’s WiFi Station+AP mode.

7.42.2 Components

USB Cable*1 ESP32*1

576 Chapter 7. Python Project

keyestudio WiKi

7.42.3 Project wiring

Connect the ESP32 to the USB port on your computer using a USB cable.

7.42.4 Component knowledge

AP+Station mode: In addition to AP mode and Station mode, ESP32 can also use AP mode and Station mode at the
same time. This mode contains the functions of the previous two modes. Turn on ESP32’s Station mode, connect it to
the router network, and it can communicate with the Internet via the router. At the same time, turn on its AP mode to
create a hotspot network. Other WiFi devices can choose to connect to the router network or the hotspot network to
communicate with ESP32.

7.42.5 Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file, please click on
the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 37WiFi Station+AP Mode”and double
left-click “Project_37_WiFi_Station+AP_Mode.py”.

7.42. Project 37WiFi Station+AP Mode 577

keyestudio WiKi

import network #Import network module.

ssidRouter = 'ChinaNet-2.4G-0DF0' #Enter the router name
passwordRouter = 'ChinaNet@233' #Enter the router password

ssidAP = 'ESP32_WiFi'#Enter the AP name
passwordAP = '12345678' #Enter the AP password

local_IP = '192.168.4.147'
gateway = '192.168.1.1'
subnet = '255.255.255.0'
dns = '8.8.8.8'

sta_if = network.WLAN(network.STA_IF)
ap_if = network.WLAN(network.AP_IF)

def STA_Setup(ssidRouter,passwordRouter):
print("Setting soft-STA ... ")
if not sta_if.isconnected():

print('connecting to',ssidRouter)
sta_if.active(True)
sta_if.connect(ssidRouter,passwordRouter)
while not sta_if.isconnected():

pass
print('Connected, IP address:', sta_if.ifconfig())
print("Setup End")

def AP_Setup(ssidAP,passwordAP):
ap_if.ifconfig([local_IP,gateway,subnet,dns])
print("Setting soft-AP ... ")
ap_if.config(essid=ssidAP,authmode=network.AUTH_WPA_WPA2_PSK, password=passwordAP)

(continues on next page)

578 Chapter 7. Python Project

keyestudio WiKi

(continued from previous page)

ap_if.active(True)
print('Success, IP address:', ap_if.ifconfig())
print("Setup End\n")

try:
AP_Setup(ssidAP,passwordAP)
STA_Setup(ssidRouter,passwordRouter)

except:
sta_if.disconnect()
ap_if.idsconnect()

7.42.6 Project result

It is analogous to Project 35 and project 36. Before running the code, you need to modify ssidRouter, passwordRouter,
ssidAP and passwordAP shown in the box of the illustration above.

After making sure that the code is modified correctly, click “Run current script” the code starts to be executed and
the “Shell” window of Thonny IDE will display as follows:

7.42. Project 37WiFi Station+AP Mode 579

keyestudio WiKi

Turn on the WiFi scanning function of your phone, and you can see the ssidAP on ESP32.

580 Chapter 7. Python Project

CHAPTER

EIGHT

GETTING STARTED WITH C (RASPBERRY PI)

About raspberry pi

Raspberry Pi is a card computer whose official system is Raspberry Pi OS, and can be installed on the Raspberry Pi,
such as: ubuntu, Windows IoT. Raspberry Pi can be used as a personal server, performing camera monitoring and
recognition, as well as voice interaction by connecting a camera and a voice interactive assistant. Also, Raspberry Pi
leads out 40Pin pins that can be connected to various sensors and control LEDs, motors, etc. This can be used to make
a robot with a Raspberry Pi.

8.1 Install the Raspberry Pi OS System

8.1.1 1. Tools needed for the Raspberry Pi system

1.1. Hardware Tool

1Raspberry Pi 4B/3B/2B 2Above 16G TFT Memory Card 3Card Reader 4Computer and other parts

1.2. Software tools that need to be installed

Windows System

1Install putty

Download linkhttps://www.chiark.greenend.org.uk/~sgtatham/putty/

581

https://www.chiark.greenend.org.uk/~sgtatham/putty/

keyestudio WiKi

582 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

1. After downloading the package file , double-click it and tap “Next”.

8.1. Install the Raspberry Pi OS System 583

keyestudio WiKi

2. Click “Next”.

3. Select“Install Putty files” and click“Install”.

584 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

4. After a few seconds, the installation is complete, click “Finish”.

8.1. Install the Raspberry Pi OS System 585

keyestudio WiKi

2Remote Login software -WinSCP

Download linkhttps://winscp.net/eng/download.php

After downloading the WinSCP software file, double-click the WinSCP software file and

click .

Click“Accept”then select the appropriate option and click“Next”, then Click“Install”.

586 Chapter 8. Getting started with C (Raspberry Pi)

https://winscp.net/eng/download.php

keyestudio WiKi

8.1. Install the Raspberry Pi OS System 587

keyestudio WiKi

588 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

8.1. Install the Raspberry Pi OS System 589

keyestudio WiKi

After a few seconds, the installation is complete, click “Finish”.

590 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

3Format TFT card tool– SD Card Formatter

Download link

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

8.1. Install the Raspberry Pi OS System 591

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

keyestudio WiKi

592 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

Unzip the SDCardFormatterv5_WinEN package and double-click the SD Card Formatter

file to run it.

Click“Next”select“ ”and click“Next”.

8.1. Install the Raspberry Pi OS System 593

keyestudio WiKi

Click “Next”again, and then click “Install”.

594 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

After a few seconds, the installation is complete, click “Finish”.

8.1. Install the Raspberry Pi OS System 595

keyestudio WiKi

4Burn mirror system software tool— Win32DiskImager

Download linkhttps://sourceforge.net/projects/win32diskimager/

1. After downloading the software file double-click

Win32DiskImagersoftware file and then click“Run”.

596 Chapter 8. Getting started with C (Raspberry Pi)

https://sourceforge.net/projects/win32diskimager/

keyestudio WiKi

2. After selecting and click“Next”.

8.1. Install the Raspberry Pi OS System 597

keyestudio WiKi

3. Click “Browse. . . ”select the location where Win32DiskImager is installed and click“Next”.

4. Click “Browse. . . ”select the location where Win32DiskImager is installed and click“Next”.

598 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

5. Select and click“Next”and then click again“Install”.

8.1. Install the Raspberry Pi OS System 599

keyestudio WiKi

After a few seconds, the installation is complete, click “Finish”.

5Scan for IP address software tool—WNetWatcher Download Linkhttp://www.nirsoft.net/utils/wnetwatcher.zip

600 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

1.3. Raspberry PI mirror system

Download link for the latest version

https://www.raspberrypi.org/downloads/raspberry-pi-os/

Download link for the old version

• Raspbianhttps://downloads.raspberrypi.org/raspbian/images/

• Raspbian fullhttps://downloads.raspberrypi.org/raspbian_full/images/

• Raspbian litehttps://downloads.raspberrypi.org/raspbian_lite/images/

We use the 2020.05.28 version in the tutorial and recommend you to use this version(Please download this version as
shown in the picture below.)

https://downloads.raspberrypi.org/raspios_full_armhf/images/raspios_full_armhf-2021-05-28/

8.1.2 2. Install Raspberry Pi OS system on Raspberry Pi 4B:

2.1. Interface the TFT memory card with a card reader, then plug the card reader into a computer’s
USB port.

8.1. Install the Raspberry Pi OS System 601

https://www.raspberrypi.org/downloads/raspberry-pi-os/
https://downloads.raspberrypi.org/raspios_full_armhf/images/raspios_full_armhf-2021-05-28/

keyestudio WiKi

2.2. Use the SD Card Formatter to format a TFT memory card, as illustrated below

602 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

8.1. Install the Raspberry Pi OS System 603

keyestudio WiKi

2.3. Burn system:

1Use Win32DiskImager to burn the official Raspberry Pi OS mirror to the TFT memory card.

604 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

2After the mirror system is burned, don’t pull out the card reader, use Notepad to create a file named SSH,
delete**.txt**, and then copy it to the boot directory of the TFT card, so that you can open SSH login function, as
shown in the following figure:

8.1. Install the Raspberry Pi OS System 605

keyestudio WiKi

3Pull out card reader.

2.4. Log in system:

The following operations require raspberry to be on the same LOCAL area network as the PC

1Preparation

Insert the burned TFT memory card into the Raspberry Pi, connect internet cable and plug in power. If you have a
screen and a HDMI cable of Raspberry Pi, connect the screen, and you can see the Raspberry Pi OS startup screen.
If you don’t have an HDMI cable of Raspberry Pi, you can enter the desktop of Raspberry Pi via SSH remote login
software—WinSCP and xrdp.

606 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

2Remote login

Use WinSCP to log in using the default Raspberry Pi system name, default user name, default password.
Note that only a raspberry pi can be connected to a network.

8.1. Install the Raspberry Pi OS System 607

keyestudio WiKi

3View the ip address and mac address

Click to open terminal and input the password: raspberry, and tap“Enter”on keyboard.

608 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

After successful login, open the terminal, input ip a and tap“Enter”keyboard to view the ip address and mac address.

8.1. Install the Raspberry Pi OS System 609

keyestudio WiKi

From the above figure, mac address of this Raspberry Pi is a6:32:17:61:9c, and ip address is 192.168.1.128(use ip
address to finish xrdp remote login).

Since mac address never changes, you could confirm ip via mac address when not sure which ip it is.

4Fix the IP address of Raspberry Pi

IP address is changeable, therefore, we need to make IP address fixed for convenient use.

Follow the below steps:

Switch to root user

If without root user’s password

Set root password

Input password in the terminal: sudo passwd root to set password.

Switch to root user

su root

Fix the configuration file of IP address

Firstly change IP address of the following configuration file.

#New IP address:address 192.168.1.99

Copy the above new address to terminal and tap“Enter”keyboard.

Configuration File**:**

echo -e ’

610 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

auto eth0

iface eth0 inet static

#Change IP address

address 192.168.1.99

netmask 255.255.255.0

gateway 192.168.1.1

network 192.168.1.0

broadcast 192.168.1.255

dns-domain 119.29.29.29

dns-nameservers 119.29.29.29

metric 0

mtu 1492

‘>/etc/network/interfaces.d/eth0

Example operation diagram, as follows

Reboot the system to activate the configuration file.

Input the restart command in the terminal: sudo reboot

You could log in via fixed IP afterwards.

Check IP and insure IP address fixed well.

8.1. Install the Raspberry Pi OS System 611

keyestudio WiKi

5Log in desktop on Raspberry Pi wirelessly

If we don’t have an HDMI cable to connect to the display, can we wirelessly log in to the Raspberry Pi desktop from the
Windows desktop? Yes, there are many methods, VNC and Xrdp are commonly used to log in desktop of Raspberry
Pi wirelessly.

Let’s take an example of Xrdp.

Install Xrdp Service in the terminal

Installation commands:

Switch to root User: su root

Installation commands: apt-get install xrdp

Enter y and tap“Enter”keyboard. . .

As shown below:

612 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

Open the remote desktop connection on Windows

Press WIN+R on keyboard and enter mstsc.exe.

As shown below:

Enter the IP address of the Raspberry Pi, as shown below. Click “Connect” and then click “Connect”again.
192.168.1.99 is the ip address we use, you could change it into your IP address.

8.1. Install the Raspberry Pi OS System 613

keyestudio WiKi

A prompt will appear and you can click“Yes”.

Then enter the user name: pi ,and the default password: raspberry, as shown below:

614 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

Click“OK”or tap“Enter”keyboard, you will view the desktop of Raspberry Pi OS, as shown below:

Now, we finish the basic configuration of the Raspberry Pi OS system.

8.1. Install the Raspberry Pi OS System 615

keyestudio WiKi

8.1.3 3. Preparation of C language control basic hardware:

C language is a programming language with a considerably fast running speed. There are numerous software and
system core code written in it, such as Linux system. Notably, hardware MCU and embedded class are not exception.
Thereby, it makes sense to learn the C language to control hardware.

(1)Description of basic raspberry pi accessories

Raspberry Pi 4B
Below are the raspberry pi pictures and model pictures supported by this learning kit. There are 40 pins.

Raspberry Pi 4B Raspberry Pi 4B Model

Hardware Interfaces

616 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

(2)Raspberry Pi +ESP32 mainboard + breadboard +USB cable, as shown below

8.1. Install the Raspberry Pi OS System 617

keyestudio WiKi

(3)Copy Example Code Folder to Raspberry Pi

Place example code folder to the pi folder of Raspberry Pi. and Just copy and paste the Arduino-Codes.zip file (the
default is ZIP file) that we provided into user pi and unzip it, as shown below:

618 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

Double-click the Arduino-Codes file, as shown below.

8.1. Install the Raspberry Pi OS System 619

keyestudio WiKi

8.2 Linux SystemRaspberry Pi

8.2.1 1. Download and install Arduino IDE

1First, click on Raspberry Pi’s browser.

2. Enter the Official Arduino website in your browserwww.arduino.cc/en/software , as shown below:

620 Chapter 8. Getting started with C (Raspberry Pi)

http://www.arduino.cc/en/software

keyestudio WiKi

3There are various versions of IDE for Arduino. Just download a version compatible with your system (install the lasted
Arduino IDE) and click “Linux ARM 32 bits”.

8.2. Linux SystemRaspberry Pi 621

keyestudio WiKi

In general, you can click JUST DOWNLOAD to download, although if you like, you can choose a small sponsorship
to help the great Arduino open source cause.

After a few seconds, the lasted Arduino IDEArduino 1.8.19 versionzip file can be directly downloaded.

622 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

(4) Click , then find the Downloads file from the pi folder and click it. In the Downloads folder, you can
see the package“arduino-1.8.19-linuxarm.tar.xz”that you just downloaded. Then unzip the package“arduino-1.8.19-
linuxarm.tar.xz”, after a while, the package is unzipped.

8.2. Linux SystemRaspberry Pi 623

keyestudio WiKi

5Click file and tap itclick“Execute”in the dialog that appears to install the Arduino IDE. Once installed, an
Arduino software shortcut is generated in the desktop.

624 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

6Click and click to open the Arduino IDE.

8.2. Linux SystemRaspberry Pi 625

keyestudio WiKi

626 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

8.2.2 2. Install the ESP32 on Arduino IDE

Note: You need to download Arduino IDE 1.8.5 or advanced version to install the ESP32.

1) Click and to open the Arduino
IDE.

8.2. Linux SystemRaspberry Pi 627

keyestudio WiKi

2) Click**“File**”→**“Preferences”**copy the website address https://dl.espressif.com/dl/package_esp32_
index.json in the“Additional Boards Manager URLs:”and click“OK” to save the address.

628 Chapter 8. Getting started with C (Raspberry Pi)

https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json

keyestudio WiKi

8.2. Linux SystemRaspberry Pi 629

keyestudio WiKi

3. Click“Tools”→“Board:”,then click “Boards Manager. . .”to enter “Boards Manager” page . Enter“esp32”as
follows and select the latest version to Install. The installation package is not large, click“Install”to start the
installation.

630 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

8.2. Linux SystemRaspberry Pi 631

keyestudio WiKi

4. After a while, the ESP32 installation package is installed. Click “Close” to Close the page.

8.2.3 3. Arduino IDE Settings and toolbars:

1Click and to open the Arduino IDE.

632 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

2When downloading the code to the board, you must select the correct name of Arduino board that matches the board
connected to the Raspberry Pi,click“Tools”→“Board:”. As shown below ;

(Note: we use the ESP32 board in this tutorial; therefore, we select ESP32 Arduino**)**

8.2. Linux SystemRaspberry Pi 633

keyestudio WiKi

Then select the correct COM port (After connecting the ESP32 mainboard to the Raspberry Pi via USB cable, you can
see the corresponding COM port).

634 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

8.2. Linux SystemRaspberry Pi 635

keyestudio WiKi

Before a code was uploaded to the ESP32 mainboard, we have to demonstrate the functionality of each symbol that
appeared in the Arduino IDE toolbar.

636 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

A- Used to verify whether there is any compiling mistakes or not.

B- Used to upload the sketch to your Arduino board.

C- Used to create shortcut window of a new sketch.

D- Used to directly open an example sketch.

E- Used to save the sketch.

F- Used to send the serial data received from board to the serial monitor.

8.2. Linux SystemRaspberry Pi 637

keyestudio WiKi

8.3 Import the Arduino C library

Before starting the course, we also need to install the Arduino C library files required by the code in the course.

8.3.1 What are Libraries ?

Librariesare a collection of code that make it easy for you to connect sensors,displays, modules, etc.

For example, the built-in LiquidCrystal library helps talk to LCD displays. There are hundreds of additional libraries
available on the Internet for download.

The built-in libraries and some of these additional libraries are listed in the reference.
(https://www.arduino.cc/en/Reference/Libraries)

Here we will introduce the most simple way to add libraries .

Step 1: Click tap“Downloads”file and click“arduino-1.8.19”file then find and

click“libraries” file from the “arduino-1.8.19”file.

638 Chapter 8. Getting started with C (Raspberry Pi)

https://www.arduino.cc/en/Reference/Libraries

keyestudio WiKi

8.3. Import the Arduino C library 639

keyestudio WiKi

Step 2 : Copy and paste the Arduino C library ZIP file (the default is ZIP file) from the provided Arduino Libraries
folder into the libraries file opened in the first stepthe route is/home/pi/Downloads/arduino-1.8.19/libraries.

Click on the link to download the Libraries file: Download Libraries file

640 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

Step 3: Unzip the Arduino C package in the libraries folderfor exampleright-click “ESP32Servo-

0.8.0.zip”file , select and tap “Extract Here”to unzip the “ESP32Servo-0.8.0.zip”file. Sim-
ilarly, unzip the remaining library files in the same way.). So you can see all the decompressed Arduino C
library files.

8.3. Import the Arduino C library 641

keyestudio WiKi

642 Chapter 8. Getting started with C (Raspberry Pi)

keyestudio WiKi

8.3. Import the Arduino C library 643

keyestudio WiKi

644 Chapter 8. Getting started with C (Raspberry Pi)

CHAPTER

NINE

RASPBERRYPI ARDUINO

Click on the link to enter the Raspberry Pi Arduino IDE tutorial: Raspberry Pi Arduino IDE Tutoria

9.1 Download code files and Libraries files

Click on the link to download the code file: Download Arduino C Codes file

Click on the link to download the Libraries file: Download Libraries file

9.2 Project 01: Hello World

9.2.1 1.Introduction

For ESP32 beginners, we’ll start with some simple things. In this project, you just need an ESP32 mainboard, USB
cable and Raspberry Pi to complete “Hello World!” Project. It is not only a communication test for ESP32 mainboard
and Raspberry Pi, but also a primary project for ESP32.

9.2.2 2.Components

ESP32*1 USB cable*1

645

keyestudio WiKi

9.2.3 3.Components

In this project, we use a USB cable to connect the ESP32 to the Raspberry Pi.

9.2.4 4.Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download itDown-
load Arduino C Codes file

The code used in this project is saved in folder(path :) “Arduino-Codes\Project 01Hello
World\Project_01_Hello_World”.

//***
/*
* Filename : Hello World
* Description : Enter the letter R,and the serial port displays"Hello World".
* Auther :http//www.keyestudio.com
*/
char val;// defines variable "val"
void setup()
{
Serial.begin(115200);// sets baudrate to 115200
}
void loop()
{
if (Serial.available() > 0) {
val=Serial.read();// reads symbols assigns to "val"
if(val=='R')// checks input for the letter "R"
{ // if so,
Serial.println("Hello World!");// shows “Hello World !”.

}
}

}
//***

Before uploading the project code to ESP32click “Tools”→“Board” and select“ESP32 Wrover Module”.

646 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

Select the serial port.

9.2. Project 01: Hello World 647

keyestudio WiKi

Click

media/b0d41283bf5ae66d2d5ab45db15331ba.png

to download the code to ESP32.

Note: If uploading the code fails, you can press the Boot button on ESP32 after click

media/d09c4a31563f04a42d451e7bc1a5fb8a.png

, and release

the Boot button

media/dc77bfcf5851c8f43aab6cbe7cec7920.png

after the percentage of uploading progress appears, as shown below:

648 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

media/157ee2e7687559d9812d24edec758150.png

The Project code is uploaded successfully

9.2.5 5.Project result

After the project code is uploaded successfully, power up with a USB cable and click the icon

media/2f6bca56f724e45a855335cb53ae9b4e.png

to enter
the serial monitor.

Set baud rate to 115200 and type “R” in the text box. Click “Send”, and the serial monitor will display “Hello World!”.

(Note: If you enter“R” in the text box and click“Send”, the serial monitor does not print“Hello World!” , you need to
press the RESET button on the ESP32 mainboard and repeat the above operation.)

media/1fd21fafd84d2b529931a89d21a03d6a.png

9.3 Project 02: Turn On LED

9.3.1 1.Introduction

In this project, we will show you how to light up the LED. We use the ESP32’s digital pin to turn on the LED so that
the LED is lit up.

9.3. Project 02: Turn On LED 649

keyestudio WiKi

9.3.2 2.Components

ESP32*1 Breadboard*1 Jumper
Wire*2

USB Cable*1

Red LED*1 220 Resistor*1

9.3.3 3.Component knowledge

1LED:

The LED is a semiconductor known as “light-emitting diode” , which is an electronic device made from semiconducting
materials(silicon, selenium, germanium, etc.). It has an anode and a cathode, the short lead is cathode, which connects
to GND; the long lead is anode, which connects to 3.3V or 5V.

media/f70404aa49540fd7aecae944c7c01f83.jpeg

2Five-color ring resistor

A resistor is an electronic component in a circuit that restricts or regulates the flow current flow. On the left is the
appearance of the resistor and on the right is the symbol for the resistance in the circuit . Its unit is(). 1 m= 1000 k1k=
1000.

650 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

We can use resistors to protect sensitive components, such as LED. The strength of the resistance is marked on the
body of the resistor with an electronic color code. Each color code represents a number, and you can refer to it in a
resistance card.

-Color 1 – 1st Digit.

-Color 2 – 2nd Digit.

-Color 3 – 3rd Digit.

-Color 4 – Multiplier.

-Color 5 – Tolerance.

media/c3df005312cd9f6d4cdae6abf3cddb83.png

In this kit, we provide three Five-color ring resistor with different resistance values. Take three Five-color ring resistor
as an example.

220 Resistor*10

media/55c0199544e9819328f6d5778f10d7d0.png

10K Resistor*10

media/246cf3885dc837c458a28123885c9f7b.png

1K Resistor*10

media/19f5dfc51adfd79b04c3b164529767ed.png

In the same voltage, there will be less current and more resistance. The connection between current(I), voltage(V), and
resistance® can be expressed by the formula: I=U/R. In the figure below, if the voltage is 3V, the current through R1
is: I = U / R = 3 V / 10 K= 0.0003A= 0.3mA.

media/b3eec552e4dfad361833730698621776.png

9.3. Project 02: Turn On LED 651

keyestudio WiKi

Don’t connect a low resistance directly to the two poles of the power supply. as this will cause excessive current to
damage the electronic components. Resistors do not have positive and negative poles.

3Bread board

Breadboards are used to build and test circuits quickly before completing any circuit design. There are many holes in the
breadboard that can be inserted into circuit components such as integrated circuits and resistors. A typical breadboard
is shown below

media/612c1381811b2d780d5f6ed6a7ec3701.png

The breadboard has strips of metal , which run underneath the board and connect the holes on the top of the board. The
metal strips are laid out as shown below. Note that the top and bottom rows of holes are connected horizontallywhile
the remaining holes are connected vertically.

media/b45e70b961537035c85878b73d371725.png

The first two rows (top) and the last two rows (bottom) of the breadboard are used for the positive pole (+) and negative
pole (-) of the power supply respectively. The conductive layout of the breadboard is shown in the figure below:

media/d5478bd5eac558252cbc235479d979eb.png

When we connect DIP (Dual In-line Packages) components, such as integrated circuits, microcontrollers, chips and so
on, we can see that a groove in the middle isolates the middle part, so the top and bottom of the groove is not connected.
DIP components can be connected as shown in the following diagram:

media/50caf14e911c4244779e99445c658db6.png

media/9b66ae2199e77fbc99b7b278dac0b567.png

Power Supply

In this project, we connected the ESP32 to the Raspberry Pi by using USB cable.

652 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.3.4 4.Wiring diagram

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correct, connect the ESP32 to the Raspberry Pi by using a USB cable.

Note: Avoid any possible short circuits (especially connecting 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause perma-
nent damage to your hardware!

media/0735997593c8858ad6441d8e9867206f.png

Note:

How to connect a LED

media/42ff6f405dfa128593827de5aa03e94b.png

How to identify the 220 Five-color ring resistor

media/55c0199544e9819328f6d5778f10d7d0.png

9.3. Project 02: Turn On LED 653

keyestudio WiKi

9.3.5 5.Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download itDown-
load Arduino C Codes file

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 02Turn On
LED\Project_02_Turn_On_LED”.

//**
/*
* Filename : Turn On LED
* Description : Make an led on.
* Auther : http//www.keyestudio.com
*/
#define LED_BUILTIN 15

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED_BUILTIN as an output.
pinMode(LED_BUILTIN, OUTPUT);

}
void loop() {
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

}
//***

Before uploading the project code to ESP32click “Tools”→“Board” and select“ESP32 Wrover Module”.

media/fe73bbd726dbe38bb24f9c0d735c90ec.png

Select the serial port.

654 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

Click

media/b0d41283bf5ae66d2d5ab45db15331ba.png

to download the code to ESP32.

9.3. Project 02: Turn On LED 655

keyestudio WiKi

Note: If uploading the code fails, you can press the Boot button on ESP32 after click

media/d09c4a31563f04a42d451e7bc1a5fb8a.png

, and release

the Boot button

media/dc77bfcf5851c8f43aab6cbe7cec7920.png

after the percentage of uploading progress appears, as shown below:

media/157ee2e7687559d9812d24edec758150.png

The Project code is uploaded successfully

656 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.3.6 6.Project result

After the project code was uploaded successfully, power up with a USB cable and the LED is lit up.

media/77dec960e108229b6d97b4af9a2db902.png

9.4 Project 03LED Flashing

9.4.1 Introduction

In this project, we will show you the LED flashing effect. We use the ESP32’s digital pin to turn on the LED and make
it flashing.

9.4.2 Components

ESP32*1 Breadboard*1

Red LED*1 220 Resistor*1 Jumper
Wire*2

USB Cable*1

9.4.3 Wiring diagram

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correct, connect the ESP32 to your computer using a USB cable.

Note: Avoid any possible short circuits (especially connecting 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause perma-
nent damage to your hardware!

9.4. Project 03LED Flashing 657

keyestudio WiKi

media/0735997593c8858ad6441d8e9867206f.png

Note:

How to connect a LED

media/42ff6f405dfa128593827de5aa03e94b.png

How to identify the 220 Five-color ring resistor

media/55c0199544e9819328f6d5778f10d7d0.png

9.4.4 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 03LED Flash-
ing\Project_03_LED_Flashing”.

//**
/*
* Filename : External LED flashing
* Description : Make an led blinking.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 15 //define the led pin

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED as an output.
pinMode(PIN_LED, OUTPUT);

}

// the loop function runs over and over again forever
void loop() {
digitalWrite(PIN_LED, HIGH); // turn the LED on (HIGH is the voltage level)
delay(500); // wait for 0.5s
digitalWrite(PIN_LED, LOW); // turn the LED off by making the voltage LOW
delay(500); // wait for 0.5s

(continues on next page)

658 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

}
//***

Before uploading Project Code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port as shown below:

Click

media/b0d41283bf5ae66d2d5ab45db15331ba.png

to download the project code to ESP32.

9.4. Project 03LED Flashing 659

keyestudio WiKi

Note: If uploading the code fails, you can press the Boot button on ESP32 after click

media/d09c4a31563f04a42d451e7bc1a5fb8a.png

, and release

the Boot button

media/dc77bfcf5851c8f43aab6cbe7cec7920.png

after the percentage of uploading progress appears, as shown below:

media/157ee2e7687559d9812d24edec758150.png

The Project code is uploaded successfully

660 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.4.5 Project result

After the project code was uploaded successfully, power up with a USB cable and the LED start flashing.

9.4. Project 03LED Flashing 661

keyestudio WiKi

9.5 Project 04: Breathing Led

9.5.1 Introduction

In previous studies, we know that LEDs have on/off state, so how to enter the intermediate state? How to output an
intermediate state to make the LED half bright? That’s what we’re going to learn.

Breathing light, that is, LED is turned from off to on gradually, and gradually from on to off, just like “breathing”. So,
how to control the brightness of a LED? We will use ESP32’s PWM to achieve this target.

9.5.2 Components

ESP32*1 Breadboard*1

Red LED*1 220 Resistor*1 Jumper
Wire*2

USB Cable*1

662 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.5.3 Component knowledge

media/6549bdbfd4e7b6b2b341012105d655e8.png

Analog & Digital

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete time signal
is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A familiar example of
an Analog Signal would be how the temperature throughout the day is continuously changing and could not suddenly
change instantaneously from 0℃ to 10℃. However, Digital Signals can instantaneously change in value. This change
is expressed in numbers as 1 and 0 (the basis of binary code). Their differences can more easily be seen when compared
when graphed as below.

media/4bdf6127e563b453a1fd8953b4ebb277.png

In practical application, we often use binary as the digital signal, that is a series of 0’s and 1’s. Since a binary signal
only has two values (0 or 1), it has great stability and reliability. Lastly, both analog and digital signals can be converted
into the other.

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits. Common
processors cannot directly output analog signals. PWM technology makes it very convenient to achieve this conversion
(translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high levels and
low levels, which alternately last for a while. The total time for each set of high levels and low levels is generally fixed,
which is called the period (Note: the reciprocal of the period is frequency). The time of high level outputs are generally
called “pulse width”, and the duty cycle is the percentage of the ratio of pulse duration, or pulse width (PW) to the total
period (T) of the waveform.

The longer the output of high levels last, the longer the duty cycle and the higher the corresponding voltage in the
analog signal will be. The following figures show how the analog signal voltages vary between 0V-3V3 (high level is
3V3) corresponding to the pulse width 0%-100%:

media/a439e1bd8a4578b43b7188c821d58594.jpeg

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this relationship, we
can use PWM to control the brightness of an LED or the speed of DC motor and so on. It is evident from the above

9.5. Project 04: Breathing Led 663

keyestudio WiKi

that PWM is not real analog, and the effective value of the voltage is equivalent to the corresponding analog. So, we
can control the output power of the LED and other output modules to achieve different effects.

ESP32 and PWM:

On ESP32, the LEDC(PWM) controller has 16 separate channels, each of which can independently control frequency,
duty cycle, and even accuracy. Unlike traditional PWM pins, the PWM output pins of ESP32 are configurable, with
one or more PWM output pins per channel. The relationship between the maximum frequency and bit precision is
shown in the following formula, where the maximum value of bit is 31.

media/f79af745d3c726ee5ca07932d2ca6d5e.png

For example, generate a PWM with an 8-bit precision (28=256. Values range from 0 to 255) with a maximum frequency
of 80,000,000/255 =312,500Hz.

9.5.4 Wiring diagram

media/0735997593c8858ad6441d8e9867206f.png

Note:

How to connect a LED

media/42ff6f405dfa128593827de5aa03e94b.png

How to identify the 220 Five-color ring resistor

media/55c0199544e9819328f6d5778f10d7d0.png

664 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.5.5 Project code

The design of this project makes the GP15 output PWM, and the pulse width gradually increases from 0% to 100%,
and then gradually decreases from 100% to 0%.

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download itDown-
load Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 04Breathing
Led\Project_04_Breathing_Led”.

//**
/*
* Filename : Breathing Led
* Description : Make led light fade in and out, just like breathing.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 15 //define the led pin
#define CHN 0 //define the pwm channel
#define FRQ 1000 //define the pwm frequency
#define PWM_BIT 8 //define the pwm precision
void setup() {
ledcSetup(CHN, FRQ, PWM_BIT); //setup pwm channel
ledcAttachPin(PIN_LED, CHN); //attach the led pin to pwm channel

}

void loop() {
for (int i = 0; i < 255; i++) { //make light fade in

ledcWrite(CHN, i);
delay(10);

}
for (int i = 255; i > -1; i--) { //make light fade out
ledcWrite(CHN, i);
delay(10);

}
}
//***

Before uploading Project Code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port as shown below:

9.5. Project 04: Breathing Led 665

keyestudio WiKi

Click

media/b0d41283bf5ae66d2d5ab45db15331ba.png

to download the project code to ESP32.

666 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

Note: If uploading the code fails, you can press the Boot button on ESP32 after click

media/d09c4a31563f04a42d451e7bc1a5fb8a.png

, and release

the Boot button

media/dc77bfcf5851c8f43aab6cbe7cec7920.png

after the percentage of uploading progress appears, as shown below:

media/157ee2e7687559d9812d24edec758150.png

The Project code is uploaded successfully

9.5. Project 04: Breathing Led 667

keyestudio WiKi

9.5.6 Project result

After the project code was uploaded successfully, power up with a USB cable and the LED is turned from ON to OFF
and then back from OFF to ONgradually like breathing.

668 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.6 Project 05Traffic Lights

9.6.1 Introduction

Traffic lights are closely related to people’s daily lives, which generally show red, yellow, and green. Everyone should
obey the traffic rules, which can avoid many traffic accidents. In this project, we will use ESP32 and some LEDs (red,
green and yellow) to simulate the traffic lights.

9.6.2 Components

ESP32*1 Bread board*1 Red LED*1 Yellow LED*1

GreenLED*1 USB Cable*1 220 Resistor*3 Jumper Wires

9.6.3 Wiring diagram

media/a991f5cc6f8759eca3b9d01f95fe4854.png

Note:

How to connect a LED

media/42ff6f405dfa128593827de5aa03e94b.png

How to identify the 220 Five-color ring resistor

media/55c0199544e9819328f6d5778f10d7d0.png

9.6. Project 05Traffic Lights 669

keyestudio WiKi

9.6.4 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 05Traffic
Lights\Project_05_Traffic_Lights”.

//**
/*
* Filename : Traffic Lights
* Description : Simulated traffic lights.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED_RED 0 //define the red led pin
#define PIN_LED_YELLOW 2 //define the yellow led pin
#define PIN_LED_GREEN 15 //define the green led pin

void setup() {
pinMode(PIN_LED_RED, OUTPUT);
pinMode(PIN_LED_YELLOW, OUTPUT);
pinMode(PIN_LED_GREEN, OUTPUT);

}

void loop() {
digitalWrite(PIN_LED_RED, HIGH);// turns on the red led
delay(5000);// delays 5 seconds
digitalWrite(PIN_LED_GREEN, LOW); // turns off the green led
for(int i=0;i<3;i++)// flashes 3 times.

{
delay(500);// delays 0.5 second
digitalWrite(PIN_LED_YELLOW, HIGH);// turns on the yellow led
delay(500);// delays 0.5 second
digitalWrite(PIN_LED_YELLOW, LOW);// turns off the yellow led

}
delay(500);// delays 0.5 second
digitalWrite(PIN_LED_GREEN, HIGH);// turns on the green led
delay(5000);// delays 5 second
digitalWrite(PIN_LED_RED, LOW);// turns off the red led

}
//***

Before uploading Project Code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port as shown below:

670 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

Click

media/b0d41283bf5ae66d2d5ab45db15331ba.png

to download the project code to ESP32.

9.6. Project 05Traffic Lights 671

keyestudio WiKi

Note: If uploading the code fails, you can press the Boot button on ESP32 after click

media/d09c4a31563f04a42d451e7bc1a5fb8a.png

, and release

the Boot button

media/dc77bfcf5851c8f43aab6cbe7cec7920.png

after the percentage of uploading progress appears, as shown below:

media/157ee2e7687559d9812d24edec758150.png

The Project code is uploaded successfully

672 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.6.5 Project result

After the project code was uploaded successfully, power up with a USB cable and you’ll see are below:

First, the green light will be on for five seconds and then off;

Next, the yellow light blinks three times and then goes off;

Then, the red light goes on for five seconds and then goes off;

Repeat steps 1 to 3 above.

9.6. Project 05Traffic Lights 673

keyestudio WiKi

9.7 Project 06: RGB LED

9.7.1 Introduction

media/94bdff69e438989d8e0934e57f2e5c00.png

RGB is composed of three colors (red, green and blue),which can emit different colors of light by mixing these three
basic colors.

In this project, we will introduce the RGB and show you how to use ESP32 to control the RGB to emit different color
light .RGB is pretty basic, but it’s also a great way to learn the fundamentals of electronics and coding.

9.7.2 Components

ESP32*1 Breadboard*1

RGB LED*1 220 Resistor*3 Jumper
Wires

USB Cable*1

674 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.7.3 Component knowledge

Most monitors adopt the RGB color standard, and all colors on a computer screen are a mixture of red, green and blue
in varying proportions.

This RGB LED has 4 pins, each color (red, green, blue) and a common cathode,To change its brightness, we can use
the PWM of the ESP32 pins, which can give different duty cycle signals to the RGB to produce different colors of light.

If we use three 10-bit PWM to control the RGB, in theory, we can create 2 10*210*210=1,073,741,824(1 billion) colors
through different combinations.

9.7.4 Wiring diagram

media/f3deb3502985ac8d66e99e4f27b3de1e.png

Note:

How to connect a LED

media/42ff6f405dfa128593827de5aa03e94b.png

How to identify the 220 Five-color ring resistor

media/55c0199544e9819328f6d5778f10d7d0.png

9.7. Project 06: RGB LED 675

keyestudio WiKi

9.7.5 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 06RGB LED\Project_06_RGB_LED”.

//**
/*
* Filename : RGB LED
* Description : Use RGBLED to show random color.
* Auther : http//www.keyestudio.com
*/
int ledPins[] = {0, 2, 15}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels
int red, green, blue;
void setup() {
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

void loop() {
red = random(0, 256);
green = random(0, 256);
blue = random(0, 256);
setColor(red, green, blue);
delay(200);

}

void setColor(byte r, byte g, byte b) {
ledcWrite(chns[0], 255 - r); //Common anode LED, low level to turn on the led.
ledcWrite(chns[1], 255 - g);
ledcWrite(chns[2], 255 - b);

}
//***

9.7.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the RGB LED starts to display random colors.

676 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.8 Project 07: Flowing Water Light

9.8.1 Introduction

In our daily life, we can see many billboards composed of different colors of LED. They constantly change the light
(like water) to attract customers’ attention. In this project, we will use ESP32 to control 10 leds to achieve the effect of
flowing water.

9.8.2 Components

ESP32*1 Breadboard*1

Red LED*1 220 Resistor*1 Jumper
Wires

USB Cable*1

9.8.3 Wiring diagram:

media/548f889607bdb0ce017c58f323c85dfa.png

Note:

How to connect a LED

media/42ff6f405dfa128593827de5aa03e94b.png

How to identify the 220 Five-color ring resistor

9.8. Project 07: Flowing Water Light 677

keyestudio WiKi

media/55c0199544e9819328f6d5778f10d7d0.png

9.8.4 Project code

This project is designed to make a flowing water lamp. Which are these actions: First turn LED #1 ON, then turn it
OFF. Then turn LED #2 ON, and then turn it OFF. . . and repeat the same to all 10 LEDs until the last LED is turns
OFF. This process is repeated to achieve the “movements” of flowing water.

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 07Flowing Water
Light\Project_07_Flowing_Water_Light”

//**
/*
* Filename : Flowing Water Light
* Description : Using ten leds to demonstrate flowing lamp.
* Auther : http//www.keyestudio.com
*/
byte ledPins[] = {22, 21, 19, 18, 17, 16, 4, 0, 2, 15};
int ledCounts;

void setup() {
ledCounts = sizeof(ledPins);
for (int i = 0; i < ledCounts; i++) {
pinMode(ledPins[i], OUTPUT);

}
}

void loop() {
for (int i = 0; i < ledCounts; i++) {
digitalWrite(ledPins[i], HIGH);
delay(100);
digitalWrite(ledPins[i], LOW);

}
for (int i = ledCounts - 1; i > -1; i--) {
digitalWrite(ledPins[i], HIGH);
delay(100);
digitalWrite(ledPins[i], LOW);

}
}
//**

678 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.8.5 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that 10 LEDs will light up from left to right and then back from right to left.

9.9 Project 081-Digit Digital Tube

9.9.1 Introduction

A 1-Digit 7-Segment Display is an electronic display device that displays decimal numbers. It is widely used in digital
clocks, electronic meters, basic calculators and other electronic devices that display digital information. Eventhough
they may not look modern enough, they are an alternative to more complex dot matrix displays and are easy to use in
limited light conditions and strong sunlight. In this project, we will use ESP32 to control 1-Digit 7-segment display
displays numbers.

9.9.2 Components

ESP32*1 Breadboard*1

1-Digit 7-Segment Display*1 220 Resistor*8 Jumper
Wires

USB Cable*1

9.9. Project 081-Digit Digital Tube 679

keyestudio WiKi

9.9.3 Component knowledge

media/e44a0f27beec739ee13e68c04865989f.png

1-Digit 7-Segment Display principle: Digital tube display is a semiconductor light emitting device,its basic unit is
a light-emitting diode (LED). Thedigital tube display can be divided into 7-segment display and 8-segment display
according to the number of segments. The 8-segment display has one more LED unit than the 7-segment display (used
for decimal point display). Each segment of the 7-segment display is a separate LED. According to the connection
mode of the LED unit, the digital tube can be divided into a common anode digital tube and a common cathode digital
tube.

In the common cathode 7-segment display, all the cathodes (or negative electrodes) of the segmented LEDs are con-
nected together, so you should connect the common cathode to GND. To light up a segmented LED, you can set its
associated pin to“HIGH”.

In the common anode 7-segment display, the LED anodes (positive electrodes) of all segments are connected together,
so you should connect the common anode to “+5V”. To light up a segmented LED, you can set its associated pin to
“LOW”.

media/28fd057848fbe0e8c8e3362768e7aa44.png

Each part of the digital tube is composed of an LED. So when you use it, you also need to use a current limiting resistor.
Otherwise, the LED will be damaged. In this experiment, we use an ordinary common cathode one-digit digital tube.
As we mentioned above, you should connect the common cathode to GND. To light up a segmented LED, you can set
its associated pin to “HIGH”.

9.9.4 Wiring diagram

Note: The direction of the 7-segment display inserted into the breadboard is consistent with the wiring diagram, with
one more point in the lower right corner.

media/631ee0861da60ed02d191de0e0e210d9.png

media/5f01d1eea2bb207f19dee4f437f93bc8.png

680 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.9.5 Project code

The digital display is divided into 7 segments, and the decimal point display is divided into 1 segment. When certain
numbers are displayed, the corresponding segment will be lit. For example, when the number 1 is displayed, segments
b and c will be turned on.

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 081-Digit Digital
Tube\Project_08_One_Digit_Digital_Tube.

//**
/*
* Filename : 1-Digit Digital Tube
* Description : One Digit Tube displays numbers from 9 to 0.
* Auther : http//www.keyestudio.com
*/
// sets the IO PIN for every segment
int a=16; // digital PIN 16 for segment a
int b=4; // digital PIN 4 for segment b
int c=5; // digital PIN 5 for segment c
int d=18; // digital PIN 18 for segment d
int e=19; // digital PIN 19 for segment e
int f=22; // digital PIN 22 for segment f
int g=23; // digital PIN 23 for segment g
int dp=17; // digital PIN 17 for segment dp
void digital_0(void) // displays number 0
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_1(void) // displays number 1
{
digitalWrite(a,LOW);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,LOW);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_2(void) // displays number 2
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,LOW);

(continues on next page)

9.9. Project 081-Digit Digital Tube 681

keyestudio WiKi

(continued from previous page)

digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,LOW);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_3(void) // displays number 3
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(f,LOW);
digitalWrite(e,LOW);
digitalWrite(dp,LOW);
digitalWrite(g,HIGH);
}
void digital_4(void) // displays number 4
{
digitalWrite(a,LOW);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_5(void) // displays number 5
{
digitalWrite(a,HIGH);
digitalWrite(b,LOW);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_6(void) // displays number 6
{
digitalWrite(a,HIGH);
digitalWrite(b,LOW);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_7(void) // displays number 7
{

(continues on next page)

682 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,LOW);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_8(void) // displays number 8
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_9(void) // displays number 9
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void setup()
{
// initialize digital pin LED as an output.
pinMode(a, OUTPUT);
pinMode(b, OUTPUT);
pinMode(c, OUTPUT);
pinMode(d, OUTPUT);
pinMode(e, OUTPUT);
pinMode(f, OUTPUT);
pinMode(g, OUTPUT);
pinMode(dp, OUTPUT);

}
void loop()
{
while(1)
{
digital_9();// displays number 9
delay(1000); // waits a sencond
digital_8();// displays number 8
delay(1000); // waits a sencond
digital_7();// displays number 7

(continues on next page)

9.9. Project 081-Digit Digital Tube 683

keyestudio WiKi

(continued from previous page)

delay(1000); // waits a sencond
digital_6();// displays number 6
delay(1000); // waits a sencond
digital_5();// displays number 5
delay(1000); // waits a sencond
digital_4();// displays number 4
delay(1000); // waits a sencond
digital_3();// displays number 3
delay(1000); // waits a sencond
digital_2();// displays number 2
delay(1000); // waits a sencond
digital_1();// displays number 1
delay(1000);// waits a sencond
digital_0();// displays number 0
delay(1000);// waits a sencond
}}
//**

9.9.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the display will display numbers from 9 to 0.

9.10 Project 094-Digit Digital Tube

9.10.1 Introduction

A 4-digit 7-segment display is a very practical display device and it is used for devices such as electronic clocks, score
counters and the number of people in the park. Because of the low price, easy to use, more and more projects will use
4 Digit 7-segment display. In this project, we use ESP32 control 4-digit 7-segment display to display four digits.

684 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.10.2 Components

ESP32*1 Breadboard*1

4-digit 7-segment display Module*1 M-F Dupont Wires USB Cable*1

9.10.3 Component knowledge

TM1650 4-digit 7-segment displayIt is a 12-pin 4-digit 7-segment display module with clock dots. The driver
chip is TM1650 which only needs 2 signal lines to enable the microcontroller to control the 4-digit 7-segment display.
The control interface level can be 5V or 3.3V.

Specifications of 4-bit 7-segment display module:

Working voltage: DC 3.3V-5V

Maximum current: 100MA

Maximum power: 0.5W

Schematic diagram of 4-digit 7-segment display module:

media/5f400887c90fc00098a3e77beca656ef.png

9.10.4 Wiring diagram

media/a7721c08ed3b73b21a997d43d2e3addd.png

9.10. Project 094-Digit Digital Tube 685

keyestudio WiKi

9.10.5 Adding the TM1650 library

This code uses a library named “TM1650”, if you haven’t installed it yet, please do so before learning. The steps to
add third-party libraries are as follows:

9.10.6 Project code

After the TM1650 library is added, You can open the code we provideIf you haven’t downloaded the code file, please
click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 094-Digit Digital
Tube\Project_09_Four_Digit_Digital_Tube”.

//**
/*
* Filename : 4-Digit Digital Tube
* Description : Four Digit Tube displays numbers from 1111 to 9999.
* Auther : http//www.keyestudio.com
*/
#include "TM1650.h"
#define CLK 22 //pins definitions for TM1650 and can be changed to other ports
#define DIO 21
TM1650 DigitalTube(CLK,DIO);

void setup(){
//DigitalTube.setBrightness(); //stes brightness from 0 to 7(default is 2)
//DigitalTube.displayOnOFF(); // 0= off,1= on(default is 1)
for(char b=1;b<5;b++){
DigitalTube.clearBit(b); //which bit to clear

}
DigitalTube.displayDot(1,true); // displays the first number
DigitalTube.displayDot(2,true);
DigitalTube.displayDot(3,true);
DigitalTube.displayDot(4,true);
DigitalTube.displayBit(3,0); //which number to display. bit=1-4, number=0-9

}

void loop(){
for(int num=0; num<10; num++){
DigitalTube.displayBit(1,num);
DigitalTube.displayBit(2,num);
DigitalTube.displayBit(3,num);
DigitalTube.displayBit(4,num);
delay(1000);

}
}
//**

686 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.10.7 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that 4-digit 7-segment display displays four digitsand repeat these actions in an infinite loop.

9.11 Project 108×8 Dot-matrix Display

9.11.1 Introduction

Dot matrix display is an electronic digital display device that can display information on machine, clocks, public trans-
port departure indicators and many other devices. In this project, we will use ESP32 control 8x8 LED dot matrix to
display patterns.

9.11.2 Components

ESP32*1 Breadboard*1

88 dot matrix module1 M-F Dupont Wires USB Cable*1

9.11.3 Component knowledge

8*8 dot matrix module
The 8*8 dot matrix is composed of 64 LEDs, and each LED is placed at the intersection of a row and a column. When
using the single chip microcomputer to drive an 8*8 dot matrix, we need 16 digital ports in total, which greatly wastes
the data of the single chip microcomputer.To this end, we specially designed this module, using the HT16K33 chip to
drive an 8*8 dot matrix, and only need to use the I2C communication port of the MCU to control the 8*8 dot matrix,
which greatly saving the MCU resources.

Specifications of 8*8 dot matrix module

• Working voltage: DC 5V

• Current: 200MA

• Maximum power: 1W

9.11. Project 108×8 Dot-matrix Display 687

keyestudio WiKi

• Schematic diagram of 8*8 dot matrix module

media/b04fe5e60695365a23644395aaef5085.png

Some modules have three DIP switches that you can toggle at will. These switches are used to set the I2C communi-
cation address, the setting method is as follows. The module has fixed the communication address. A0, A1 and A2 are
connected to GND, and the address is 0x70.

9.11.4 Wiring diagram

media/78a74a4a920791b492bcd398dc8dc82b.png

688 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.11.5 Adding the HT16K33_Lib_For_ESP32 library

This code uses a library named “HT16K33_Lib_For_ESP32”, if you haven’t installed it yet, please do so before
learning. The steps to add third-party libraries are as follows:

9.11.6 Project code

After the HT16K33_Lib_For_ESP32 library is added, You can open the code we provideIf you haven’t downloaded
the code file, please click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 108×8 Dot-matrix Dis-
play\Project_10_8×8_Dot_Matrix_Display”.

//**
/*
* Filename : 8×8 Dot-matrix Display
* Description : 8x8 LED dot matrix display“Heart” pattern.
* Auther : http//www.keyestudio.com
*/
#include "HT16K33_Lib_For_ESP32.h"

#define SDA 21
#define SCL 22

ESP32_HT16K33 matrix = ESP32_HT16K33();

//The brightness values can be set from 1 to 15, with 1 darkest and 15 brightest
#define A 15

byte result[8][8];
byte test1[8] = {0x00,0x42,0x41,0x09,0x09,0x41,0x42,0x00};

void setup()
{
matrix.init(0x70, SDA, SCL);//Initialize matrix
matrix.showLedMatrix(test1,0,0);
matrix.show();

}

void loop()
{
for (int i = 0; i <= 7; i++)
{
matrix.setBrightness(i);
delay(100);

}
for (int i = 7; i > 0; i--)
{
matrix.setBrightness(i);
delay(100);

}
}
//**

9.11. Project 108×8 Dot-matrix Display 689

keyestudio WiKi

9.11.7 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 8*8 dot matrix display “Smiling face” pattern.

9.12 Project 1174HC595N Control 8 LEDs

9.12.1 Introduction

In previous projects, we learned how to light up an LED.

With only 32 IO ports on ESP32, how do we light up a lot of leds? Sometimes it is possible to run out of pins on
the ESP32, and you need to extend it with the shift register.You can use the 74HC595N chip to control 8 outputs at a
time, taking up only a few pins on your microcontroller. In addition, you can also connect multiple registers together to
further expand the output. In this project, we will use an ESP32, a 74HC595 chip and LEDs to make a flowing water
light to understand the function of the 74HC595 chip.

9.12.2 Components

![img](file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml16172\wps58.jpg)
ESP32*1 Breadboard*1 74HC595N

chip*1
Jumper Wires

220Resistor*8 Red LED*8 USB Ca-
ble*1

9.12.3 Component knowledge

media/6921c6d60135e072ed4bd24564ec4a6d.png

74HC595N Chip: The 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert
the serial data of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With
this characteristic, the 74HC595 chip can be used to expand the IO ports of an ESP32. At least 3 ports are required to
control the 8 ports of the 74HC595 chip.

690 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

media/858b189f06ad68afe051b15043b2affd.png

The ports of the 74HC595 chip are described as follows

PIN FUNCTION
Pin 13–OE Enable output, When this pin is in high level, Q0-Q7 is in high resistance state. When this pin is

in low level, Q0-Q7 is in output mode.
Pin 14—SI Serial data Input, only enter one bit at a time, so you can enter eight consecutive times to form one

byte.
Pin
10—SCLR

Remove shift register: When this pin is in low level, the content in shift register will be cleared. . .
In this experiment, we connect VCC to maintain a high level.

Pin 11—SCK Serial shift clock: when its electrical level is rising, serial data input register will do a shift.
Pin 12—RCK Parallel Update Output: when its electrical level is rising, it will update the parallel data output. In

this case, the data is output from ports Q0 to Q7 in parallel
Pin 9—SQH Serial data output: it can be connected to more 74HC595 in series.
Q0–Q7(Pin
15Pin 1-7)

Parallel data output, can directly control the 8 segments of the digital tube.

9.12.4 Wiring diagram

Note: Note the orientation in which the 74HC595N chip is inserted.

media/a6d03617539b70d6d69fa7e9acb25be9.png

media/11a03579b6cf94599f00554bfe014a3b.png

9.12.5 Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download itDown-
load Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 1174HC595N Control 8
LEDs\Project_11_74HC595N_Control_8_LEDs.

//**
/*
* Filename : 74HC595N Control 8 LEDs

(continues on next page)

9.12. Project 1174HC595N Control 8 LEDs 691

keyestudio WiKi

(continued from previous page)

* Description : Use 74HC575N to drive ten leds to display the flowing light.
* Auther : http//www.keyestudio.com
*/
int dataPin = 14; // Pin connected to DS of 74HC595(Pin14)
int latchPin = 12; // Pin connected to ST_CP of 74HC595(Pin12)
int clockPin = 13; // Pin connected to SH_CP of 74HC595(Pin11)
void setup() {

// set pins to output
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);

}
void loop() {
// Define a one-byte variable to use the 8 bits to represent the state of 8 LEDs of␣

→˓LED bar graph.
// This variable is assigned to 0x01, that is binary 00000001, which indicates only␣

→˓one LED light on.
byte x = 0x01; // 0b 0000 0001
for (int j = 0; j < 8; j++) { // Let led light up from right to left
writeTo595(LSBFIRST, x);
x <<= 1; // make the variable move one bit to left once, then the bright LED move␣

→˓one step to the left once.
delay(50);

}
delay(100);
x = 0x80; //0b 1000 0000
for (int j = 0; j < 8; j++) { // Let led light up from left to right
writeTo595(LSBFIRST, x);
x >>= 1;
delay(50);

}
delay(100);

}
void writeTo595(int order, byte _data) {
// Output low level to latchPin
digitalWrite(latchPin, LOW);
// Send serial data to 74HC595
shiftOut(dataPin, clockPin, order, _data);
// Output high level to latchPin, and 74HC595 will update the data to the parallel␣

→˓output port.
digitalWrite(latchPin, HIGH);

}
//**

692 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.12.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 8 LEDs start flashing in flowing water mode.

9.13 Project 12Active Buzzer

9.13.1 Introduction

Active buzzer is a sound component that is widely used as a sound component for computers, printers, alarms, electronic
toys , phones and timers. It has an internal vibration source, just by connecting to a 5V power supply, it can continuously
buzz. In this project, we will use ESP32 to control the active buzzer to beep.

9.13.2 Components

ESP32*1 Breadboard*1 Active buzzer*1

NPN transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

9.13.3 Component knowledge

media/11ec5ddc982db9928341e858aab94652.png

Active buzzer:
Active buzzer inside has a simple oscillator circuit, which can convert constant direct current into a certain frequency
pulse signal. Once active buzzer receives a high level, it will produce sound. Passive buzzer is an internal without
vibration source integrated electronic buzzer, it must be driven by 2k to 5k square wave, rather than a DC signal. The
two buzzers are very similar in appearance, but one buzzer with a green circuit board is a passive buzzer, while the
other buzzer with black tape is an active buzzer. Passive buzzers don’t have positive polarity, but active buzzers have.
As shown below:

9.13. Project 12Active Buzzer 693

keyestudio WiKi

media/0f9825969867ac2d65bb1a19ed0ad2ab.png

Transistor:

Because the buzzer requires such large current that GPIO of ESP32 output capability cannot meet the requirement, a
transistor of NPN type is needed here to amplify the current.

Transistor, the full name: semiconductor transistor, is a semiconductor device that controls current. Transistorcan be
used to amplify weak signal, or works as a switch. It has three electrodes(PINs): base (b), collector © and emitter (e).
When there is current passing between “be”, “ce” will allow several-fold current (transistor magnification) pass, at this
point, transistor works in the amplifying area. When current between “be” exceeds a certain value, “ce” will not allow
current to increase any longer, at this point, transistor works in the saturation area. Transistor has two types as shown
below: PNP and NPN, here are the PNP transistor and NPN transistor.

media/02dad9f2fcac0d7bfe4cc135d2301aa6.png

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

Based on the transistor’s characteristics, it is often used as a switch in digital circuits. As micro-controller’s capacity
to output current is very weak, we will use transistor to amplify current and drive large-current components.

When using NPN transistor to drive buzzer, we often adopt the following method. If GPIO outputs high level, current
will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs low level, no current
flows through R1, the transistor will not be conducted, and buzzer will not sound.

When using PNP transistor to drive buzzer, we often adopt the following method. If GPIO outputs low level, current
will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs high level, no
current flows through R1, the transistor will not be conducted, and buzzer will not sound.

media/2a9755ec14ab58c67d7d8341601d8dbc.png

694 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.13.4 Wiring diagram

media/5c215684c8945622441478edb6f16e30.png

Note: The buzzer power supply in this circuit is 5V. On a 3.3V power supply, the buzzer can work, but will reduce the
loudness.

9.13.5 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 12Active
Buzzer\Project_12_Active_Buzzer”.

//**
/*
* Filename : Active Buzzer
* Description : Active buzzer beeps.
* Auther : http//www.keyestudio.com
*/
#define buzzerPin 15 //define buzzer pins

void setup ()
{
pinMode (buzzerPin, OUTPUT);

}
void loop ()
{
digitalWrite (buzzerPin, HIGH);
delay (500);
digitalWrite (buzzerPin, LOW);
delay (500);

}
//**

9.13.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the active buzzer beeps.

9.13. Project 12Active Buzzer 695

keyestudio WiKi

9.14 Project 13Passive Buzzer

9.14.1 Introduction:

In a previous project, we studied an active buzzer, which can only make a sound and may make you feel very
monotonous. In this project, we will learn a passive buzzer and use the ESP32 control it to work. Unlike the active
buzzer, the passive buzzer can emit sounds of different frequencies.

9.14.2 Components

ESP32*1 Breadboard*1 Passive Buzzer *1

NPN transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

9.14.3 Component knowledge

media/8d0020e53824072cbe9d4f7d2f8acb4f.png

Passive buzzer: A passive buzzer is an integrated electronic buzzer with no internal vibration source and it has to be
driven by 2K-5K square waves, not DC signals. The two buzzers are very similar in appearance, but one buzzer with a
green circuit board is a passive buzzer and the other buzzer with black tape is an active buzzer. Passive buzzers cannot
distinguish between positive polarity while active buzzers can.

media/fc42c5ed014609ff0b290ee5361bb2fd.png

Transistor: Please refer to Project 12.

696 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.14.4 Wiring diagram:

media/9c12d89ce3f10c838e63f1334f41fc9e.png

9.14.5 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 13Passive
Buzzer\Project_13_Passive_Buzzer.

//**
/*
* Filename : Passive Buzzer
* Description : Passive Buzzer sounds the alarm.
* Auther : http//www.keyestudio.com
*/
#define LEDC_CHANNEL_0 0

// LEDC timer uses 13 bit accuracy

#define LEDC_TIMER_13_BIT 13

// Define tool I/O ports

#define BUZZER_PIN 15

//Create a musical melody list, Super Mario

int melody[] = {330, 330, 330, 262, 330, 392, 196, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392, 440, 349, 392, 330, 262, 294, 247, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392,440, 349, 392, 330, 262, 294, 247, 392, 370, 330, 311, 330, 208, 220,␣
→˓262, 220, 262,

294, 392, 370, 330, 311, 330, 523, 523, 523, 392, 370, 330, 311, 330, 208, 220, 262,220,␣
→˓262, 294, 311, 294, 262, 262, 262, 262, 262, 294, 330, 262, 220, 196, 262, 262,262,␣
→˓262, 294, 330, 262, 262, 262, 262, 294, 330, 262, 220, 196};

//Create a list of tone durations

int noteDurations[] = {8,4,4,8,4,2,2,3,3,3,4,4,8,4,8,8,8,4,8,4,3,8,8,3,3,3,3,4,4,8,4,8,8,
→˓8,4,8,4,3,8,8,2,8,8,8,4,4,8,8,4,8,8,3,8,8,8,4,4,4,8,2,8,8,8,4,4,8,8,4,8,8,3,3,3,1,8,4,
→˓4,8,4,8,4,8,2,8,4,4,8,4,1,8,4,4,8,4,8,4,8,2};
void setup() {
pinMode(BUZZER_PIN, OUTPUT); // Set the buzzer to output mode
}

(continues on next page)

9.14. Project 13Passive Buzzer 697

keyestudio WiKi

(continued from previous page)

void loop() {

int noteDuration; //Create a variable of noteDuration

for (int i = 0; i < sizeof(noteDurations); ++i)

{
noteDuration = 800/noteDurations[i];

ledcSetup(LEDC_CHANNEL_0, melody[i]*2, LEDC_TIMER_13_BIT);

ledcAttachPin(BUZZER_PIN, LEDC_CHANNEL_0);

ledcWrite(LEDC_CHANNEL_0, 50);

delay(noteDuration * 1.30); //delay
}

}
//**

9.14.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the passive buzzer plays music.

9.15 Project 14: Mini Table Lamp

9.15.1 Introduction

Do you know that the ESP32 can light up an LED when you press a button? In this project, we will use ESP32a button
switch and an LED to make a mini table lamp.

698 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.15.2 Components

ESP32*1 Breadboard*1 Button*1 10K Resistor*1

Red LED*1 220 Resistor*1 USB Cable*1 Jumper Wires Button Cap*1

9.15.3 Component knowledge

media/5b8fea4657b47510d199f740fdcaaa9d.png

Button: A button can control the circuit on and off, the button is plugged into a circuit, the circuit is disconnected when
the button is not pressed. The circuit works when you press the button, but breaks again when you release it. Why does
it only work when you press it? It starts from the internal structure of the button, which don’t allow current to travel
from one end of the button to the other before it is pressed; When pressed, a metal strip inside the button connects the
two sides to allow electricity to pass through.

The internal structure of the button is shown in the figure

media/d2a204e61c768f18924150db58aee093.png

. Before the button is pressed, 1 and 2 are
on, 3 and 4 are also on, but 1, 3 or 1, 4 or 2, 3 or 2, 4 are off (not working). Only when the button is pressed, 1, 3 or 1,
4 or 2, 3 or 2, 4 are on.

The button switch is one of the most commonly used components in circuit design.

Schematic diagram of the button:

media/5e42fde9876f9be810d85a7fb8b331f7.pngmedia/8677548f9e756281629430d66ba3a460.png

9.15. Project 14: Mini Table Lamp 699

keyestudio WiKi

What is button jitteritch circuit as “press the button and turn it on immediately”, “press it again and turn it off imme-
diately”. In fact,

We think of the switch circuit as “press the button and turn it on immediately”, “press it again and turn it off immedi-
ately”. In fact, this is not the case.

The button usually uses a mechanical elastic switch, and the mechanical elastic switch will produce a series of
[shake](javascript:;) due to the elastic action at the moment when the mechanical contact is opened and closed (usually
about 10ms). As a result, the button switch will not immediately and stably turn on the circuit when it is closed, and it
will not be completely and instantaneously disconnected when it is turned off.

media/7e7ac82db8bb810a7ee1de4181ceaa2d.jpeg

How to eliminate the jitter?

There are two common methods, namely fix jitter in the software and hardware. We only discuss the jitter removal in
the software.

We already know that the jitter time generated by elasticity is about 10ms, and the delay command can be used to delay
the execution time of the command to achieve the effect of jitter removal.

Therefore, we delay 0.02s in the code to achieve the key anti-shake function.

media/c0d68d1134b0b4097e8983ed2cac07fc.jpeg

9.15.4 Wiring Diagram

media/a5b85f1e1f5714afbe4730b1265e3a15.png

Note:

How to connect the LED

media/f70404aa49540fd7aecae944c7c01f83.jpeg

How to identify the 220 5-band resistor and 10K 5-band resistor

700 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

media/55c0199544e9819328f6d5778f10d7d0.png

media/246cf3885dc837c458a28123885c9f7b.png

9.15.5 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 14Mini Table
Lamp\Project_14_Mini_Table_Lamp”.

//**
/*
* Filename : Mini Table Lamp
* Description : Make a table lamp.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 4
#define PIN_BUTTON 15
bool ledState = false;

void setup() {
// initialize digital pin PIN_LED as an output.
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_BUTTON, INPUT);

}

// the loop function runs over and over again forever
void loop() {
if (digitalRead(PIN_BUTTON) == LOW) {
delay(20);
if (digitalRead(PIN_BUTTON) == LOW) {
reverseGPIO(PIN_LED);

}
while (digitalRead(PIN_BUTTON) == LOW);

}
}

void reverseGPIO(int pin) {
ledState = !ledState;
digitalWrite(pin, ledState);

}
//**

9.15. Project 14: Mini Table Lamp 701

keyestudio WiKi

9.15.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that press the push button switch, the LED turns on; When it is released, the LED is still on. Press it again,
and the LED turns off. When it is released, the LED stays off. Doesn’t it look like a mini table lamp?

9.16 Project 15Tilt and LED

9.16.1 Introduction

The ancients without electronic clock, so the hourglass are invented to measure time. The hourglass has a large capacity
on both sides, and which is filled with fine sand on one side. What’s more, there is a small channel in the middle, which
can make the hourglass stand upright , the side with fine sand is on the top. due to the effect of gravity,the fine sand
will flow down through the channel to the other side of the hourglass.

When the sand reaches the bottom, turn it upside down and record the number of times it has gone through the hourglass,
therefore, the next day we can know the approximate time of the day by it. In this project, we will use ESP32 to control
the tilt switch and LED lights to simulate an hourglass and make an electronic hourglass.

9.16.2 Components

ESP32*1 Tilt Switch*1 Red LED*4 10K Resistor*1

Breadboard*1 220 Resistor*4 USB Cable*1 Jumper Wires

9.16.3 Component knowledge

Tilt switch is also called digital switch. Inside is a metal ball that can roll. The principle of rolling the metal ball to
contact with the conductive plate at the bottom, which is used to control the on and off of the circuit. When it is a rolling

702 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

ball tilt sensing switch with single directional trigger, the tilt sensor is tilted toward the trigger end (two gold-plated pin
ends), the tilt switch is in a closed circuit and the voltage at the analog port is about 5V(binary number is 1023),

In this way, the LED will light up. When the tilting switch is in horizontal position or tilting to the other end, the tilting
switch is in open state the voltage of the analog port is about 0V (binary number is 0), the LED will turn off. In the
program, we judge the state of the switch based on whether the voltage value of the analog port is greater than 2.5V
(binary number is 512).

The internal structure of the tilt switch is used here to illustrate how it works, as shown below:

media/bf8b10ad248ac939ac4ef96d02ed87c7.png

4.Wiring Diagram

media/a46c0b8be898ba596308ce56993c26ba.png

Note:

How to connect the LED

media/f70404aa49540fd7aecae944c7c01f83.jpeg

How to identify the 220 5-band resistor and 10K 5-band resistor

media/55c0199544e9819328f6d5778f10d7d0.png

media/246cf3885dc837c458a28123885c9f7b.png

9.16. Project 15Tilt and LED 703

keyestudio WiKi

9.16.4 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 15Tilt And
LED\Project_15_Tilt_And_LED.

//**
/*
* Filename : Tilt And LED
* Description : Tilt switches and four leds to simulate an hourglass.
* Auther : http//www.keyestudio.com
*/
#define SWITCH_PIN 15 // the tilt switch is connected to Pin15
byte switch_state = 0;
void setup()
{

for(int i=16;i<20;i++)
{

pinMode(i, OUTPUT);
}
pinMode(SWITCH_PIN, INPUT);

for(int i=16;i<20;i++)
{
digitalWrite(i,0);

}
Serial.begin(9600);

}
void loop()
{
switch_state = digitalRead(SWITCH_PIN);
Serial.println(switch_state);
if (switch_state == 0)
{
for(int i=16;i<20;i++)
{
digitalWrite(i,1);
delay(500);

}
}
if (switch_state == 1)

{
for(int i=19;i>15;i--)
{
digitalWrite(i,0);
delay(500);

}
}

}
//**

704 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.16.5 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that when you tilt the breadboard to an angle, the LEDs will light up one by one. When you turn the breadboard
to the original angle, the LEDs will turn off one by one. Like the hourglass, the sand will leak out over time.

9.17 Project 16Burglar Alarm

9.17.1 Introduction

The PIR motion sensor measures the thermal infrared (IR) light emitted by moving objects. The sensor can detect the
movement of peopleanimals and carsto trigger safety alarms and lighting. They are used to detect movement and ideal
for security such as burglar alarms and security lighting systems. In this project, we will use the ESP32 to control PIR
motion sensorbuzzer and LED to simulate burglar alarm.

9.17.2 Components

ESP32*1 Human Body Infrared Sen-
sor*1

Active Buzzer*1 Red LED*1

Breadboard*1 M-F Dupont Wires 220Resistor*1 USB Cable*1 Jumper
Wires

9.17.3 Component knowledge

media/51dc6a366ebb066960c32263c37e0244.png

PIR Motion Sensor : Its principle is that when some crystals, such as lithium tantalate and triglyceride sulfate are
heated, the two ends of the crystal will generate an equal number of charges with opposite signs. These charges can be
converted into voltage output by an amplifier. Due to the human body will release infrared light, although relatively
weak, can still be detected. When the Human Body Infrared Sensor detects the movement of a nearby person, the
sensor signal terminal outputs a high level 1, otherwise, it outputs low level 0.

9.17. Project 16Burglar Alarm 705

keyestudio WiKi

Special attention should be paid to the fact that this sensor can detect peopleanimals and cars in motion, which cannot
be detected in static, and the maximum detection distance is about 7 meters.

Note: Since vulnerable to radio frequency radiation and temperature changes, the PIR motion sensor should be kept
away from heat sources like radiators, heaters and air conditioners, as well as direct irradiation of sunlight, headlights
and incandescent light.

Features:

• Maximum input voltage: DC 3.3 ~ 5V

• Maximum operating current: 50MA

• Maximum power: 0.3W

• Operating temperature: -20 ~ 85℃

• Output high level is 3V, low level is 0V.

• Delay time: about 2.3 to 3 seconds

• Detection Angle: about 100 degrees

• Maximum detection distance: about 7 meters

• Indicator light output (when the output is high, it will light up)

• Pin limiting current: 50MA

Schematic diagram:

media/9e1ec604aa6f9d4a3c1fe41d4bccd699.png

9.17.4 Wiring Diagram

media/67fd78fc542f0e7c232d96a23fb90120.png

9.17.5 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 16Burglar
Alarm\Project_16_Burglar_Alarm”.

//**
/*
* Filename : Burglar Alarm

(continues on next page)

706 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

* Description : Human infrared sensor buzzer and LED to simulate burglar alarm.
* Auther : http//www.keyestudio.com
*/
#define buzzerPin 2 // the pin of the buzzer
#define ledPin 0 // the pin of the PIR motion sensor
#define pirPin 15 // the pin of the PIR motion sensor
byte pirStat = 0; // the state of the PIR motion sensor
void setup() {
pinMode(buzzerPin, OUTPUT);
pinMode(ledPin, OUTPUT);
pinMode(pirPin, INPUT);
}
void loop()
{
pirStat = digitalRead(pirPin);

if (pirStat == HIGH)
{ // if people or moving animals are detected

digitalWrite(buzzerPin, HIGH); // the buzzer buzzes
digitalWrite(ledPin, HIGH); // the led turn on
delay(500);
digitalWrite(buzzerPin, LOW); // the buzzer doesn't sound
digitalWrite(ledPin, LOW); // the led turn off
delay(500);

}
else {
digitalWrite(buzzerPin, LOW); // if people or moving animals are not detected, turn␣

→˓off buzzers
digitalWrite(ledPin, LOW); // the led turn off

}
}
//***

9.17.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that if the sensor detects someone moving nearby, the buzzer will continuously issue an alarm and the LED
will continuously flash.

9.18 Project 17 I2C 128×32 LCD

9.18.1 Introduction

In everyday life, we can do all kinds of experiments with the display module and also DIY a variety of small objects.
For example, you can make a temperature meter with a temperature sensor and display, or make a distance meter with an
ultrasonic module and display. In this project, we will use the LCD_128X32_DOT module as the display and connect it
to the ESP32, which will be used to control the LCD_128X32_DOT display to display various English words, common
symbols and numbers.

9.18. Project 17 I2C 128×32 LCD 707

keyestudio WiKi

9.18.2 Components

ESP32*1 Breadboard*1

LCD_128X32_DOT*1 M-F Dupont Wires USB Cable*1

9.18.3 Component knowledge

LCD_128X32_DOT: It is an LCD module with 128*32 pixels and its driver chip is ST7567A. The module uses the
IIC communication mode, while the code contains a library of all alphabets and common symbols that can be called
directly. When using, we can also set it in the code so that the English letters and symbols show different text sizes. To
make it easy to set up the pattern display, we also provide a mold capture software that converts a specific pattern into
control code and then copies it directly into the test code for use.

Schematic diagram of LCD_128X32_DOT

media/5451aed32bc5b7b30fbd5613ad09a65b.png

Features:

Pixel: 128*32 character

Operating voltage(chip)4.5V to 5.5V

Operating current100mA (5.0V)

Optimal operating voltage(module):5.0V

708 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.18.4 Wiring Diagram

media/072d954dac310add077688398ad59af2.png

9.18.5 Adding the lcd128_32_io library

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

This code uses a library named “lcd128_32_io”, if you haven’t installed it yet, please do so before learning. The steps
to add third-party libraries are as follows:

9.18.6 Project code

After the lcd128_32_io library was added, You can open the code we provideIf you haven’t downloaded the code file,
please click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 17 I2C 128×32 LCD2.C_Tutorial\2.
Projects\Project_17_I2C_128_32_LCD”.

//**
/*
* Filename : LCD 128*32
* Description : LCD 128*32 display string
* Auther : http//www.keyestudio.com
*/
#include "lcd128_32_io.h"

//Create lCD128 *32 pinsda--->21 scl--->22
lcd lcd(21, 22);

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //clear

}

void loop() {
lcd.Cursor(0, 4); //Set display position
lcd.Display("KEYESTUDIO"); //Setting the display
lcd.Cursor(1, 0);
lcd.Display("ABCDEFGHIJKLMNOPQR");
lcd.Cursor(2, 0);
lcd.Display("123456789+-*/<>=$@");
lcd.Cursor(3, 0);
lcd.Display("%^&(){}:;'|?,.~\\[]");

}
//**

9.18. Project 17 I2C 128×32 LCD 709

keyestudio WiKi

9.18.7 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB ca-
ble and you will see that the 128X32LCD module display will show“KEYESTUDIO”at the first line, “ABCDE-
FGHIJKLMNOPQR”will be displayed at the second line, “123456789±*/<>=$@”will be shown at the third line
and“%^&(){}:;’|?,.~\[]”will be displayed at the fourth line.

9.19 Project 18Small Fan

9.19.1 Introduction

In hot summer, we need electric fans to cool us down, so in this project, we will use ESP32 control 130 motor module
and small fan blade to make a small electric fan.

9.19.2 Components

ESP32*1 Breadboard*1 Battery Holder*1 Fan*1

130 Motor Module*1 Keyestudio bread board special
power module*1

M-F Dupont Wires No.5 battery (self-
provided)*6

USB Cable*1

9.19.3 Component knowledge :

media/75a9140bdb671783bb79a71ca76fae69.png

130 motor module: The motor control module uses the HR1124S motor control chip. which is a single-channel H-
bridge driver chip for DC motor. The H-bridge driver part of the HR1124S uses low on-resistance PMOS and NMOS
power tubes. The low on-resistance ensure low power loss of the chip and make the chip work safely for longer time In

710 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

addition, In addition, the HR1124S has low standby current and low static operating current, which makes the HR1124S
easy to use in toy solutions.

Features:

Working voltage: 5V

Working current: 200MA

Working power: 2W

Working temperature: -10℃~ +50℃

Schematic diagram of 130 motor module

Keyestudio Breadboard Power Supply Module

Introduction:

This breadboard power supply module is compatible with 5V and 3.3V, which can be applied to MB102 breadboard.
The module contains two channels of independent control, powered by the USB all the way.

The output voltage is constant for the DC5V, and another way is powered by DC6.5-12V, output controlled by the slide
switch, respectively for DC 5V and DC 3.3V.

If the other power supply is DC 6.5-12v, when the slide switch is switched to +5V, the output voltages of the left and
right lines of the module are DC 5V. When the slide switch is switched to +3V, the output voltage of the USB power
supply terminal of the module is DC5V , and the output voltage of the DC 6.5-12V power supply terminal of the other
power supply is DC3.3V.

Specification:

• Applied to MB102 breadboard;

• Input voltageDC 6.5-12V or powered by USB;

• Output voltage3.3V or 5V

• Max output current<700ma

• Up and down two channels of independent control, one of which can be switched to 3.3V or 5V;

Comes with two sets of DC output pins, easy for external use.

9.19. Project 18Small Fan 711

keyestudio WiKi

9.19.4 Wiring Diagram

media/83f622be72c1b5501ffeab7bd1caf421.png

9.19.5 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 18Small Fan\Project_18_ Small_Fan”.

//**
/*
* Filename : Small Fan
* Description : Fan clockwise rotation,stop,counterclockwise rotation,stop,cycle.
* Auther : http//www.keyestudio.com
*/
#define Motorla 15 // the Motor_IN+ pin of the motor
#define Motorlb 2 // the Motor_IN- pin of the motor

void setup(){
pinMode(Motorla, OUTPUT);//set Motorla to OUTPUT
pinMode(Motorlb, OUTPUT);//set Motorlb to OUTPUT

}
void loop(){
//Set to rotate for 5s anticlockwise
digitalWrite(Motorla,HIGH);
digitalWrite(Motorlb,LOW);
delay(5000);

//Set to stop rotating for 2s
digitalWrite(Motorla,LOW);
digitalWrite(Motorlb,LOW);
delay(2000);

//Set to rotate for 5s clockwise
digitalWrite(Motorla,LOW);
digitalWrite(Motorlb,HIGH);
delay(5000);

//Set to stop rotating for 2s
digitalWrite(Motorla,LOW);
digitalWrite(Motorlb,LOW);
delay(2000);

}
//**

712 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.19.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see thatthe small fan turns counterclockwise for 5 seconds and stops for 2 seconds, and then turns clockwise for 5
seconds and stops for 2 seconds, which repeats in an endless loop.

9.20 Project 19Servo Sweep

9.20.1 Introduction

Servo is an electric motor that can rotate very precisely. At present, it has been widely used in toy cars, remote control
helicoptersairplanesrobots, etc. In this project, we will use ESP32 to control the rotation of the servo.

9.20.2 Components

ESP32*1 Breadboard*1 USB Cable*1

Servo*1 Jumper Wires

9.20.3 Component knowledge

Servo

The servo is a kind of position servo driver, which is mainly composed of a housinga circuit boarda copless motora gear
and position detector. Its working principle is that the receiver or microcontroller sends a signal to the servo which has

9.20. Project 19Servo Sweep 713

keyestudio WiKi

an internal reference circuit that generates a reference signal with a period of 20ms and a width of 1.5ms, and compares
the DC bias voltage with the voltage of the potentiometer to output voltage difference.

The IC on the circuit board determines the direction of rotation, and then drives the coreless motor to start rotation
and transmits the power to the swing arm through the reduction gear, while the position detector sends back a signal to
determine whether it has reached the positioning. It is suitable for those control systems that require constant change
of angle and can be maintained.

When the motor rotates at a certain speed, the potentiometer is driven by the cascade reduction gear to rotate so that
the voltage difference is 0 and the motor stops rotating. The angle range of general servo rotation is 0 to 180 degrees.

The pulse period for controlling the servo is 20ms, the pulse width is 0.5ms to 2.5ms, and the corresponding position
is -90 degrees to +90 degrees. The following is an example of a 180 degree servo

media/708316fde05c62113a3024e0efb0c237.jpeg

Servo motors have many specifications, but they all have three connecting wires, which are brown, red, and orange
(different brands may have different colors). The brown is GND, the red is the positive power supply, and the orange is
the signal line.

media/3f5bc31305e64108bed3b3619d602891.jpeg

9.20.4 Wiring Diagram

When supplying the servo, please note that the power supply voltage should be 3.3V-5V. Make sure there are no errors
when connecting the servo to the power supply.

media/39621cc861e5f7c189a047b7f0bbd0be.png

9.20.5 Adding the ESP32Servo library

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

This code uses a library named “ESP32Servo”, If you haven’t installed it yet, please do so before learning. The steps
to add third-party libraries are as follows:

714 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.20.6 Project code

After the ESP32Servo library is added, You can open the code we provideIf you haven’t downloaded the code file,
please click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 19Servo Sweep\Project_19_Servo_Sweep”.

//**
/*
* Filename : Servo Sweep
* Description : Control the servo motor for sweeping
* Auther : http//www.keyestudio.com
*/
#include <ESP32Servo.h>

Servo myservo; // create servo object to control a servo

int posVal = 0; // variable to store the servo position
int servoPin = 15; // Servo motor pin

void setup() {
myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

→˓object
}
void loop() {

for (posVal = 0; posVal <= 180; posVal += 1) { // goes from 0 degrees to 180 degrees
// in steps of 1 degree
myservo.write(posVal); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
for (posVal = 180; posVal >= 0; posVal -= 1) { // goes from 180 degrees to 0 degrees
myservo.write(posVal); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
}
//**

9.20.7 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the Servo will rotate from 0 degrees to 180 degrees and then reverse the direction to make it rotate from
180 degrees to 0 degrees and repeat these actions in an endless loop.

media/c5250405a4290ecb2d758ff1097310c7.png

9.20. Project 19Servo Sweep 715

keyestudio WiKi

9.21 Project 20Stepping Motor

9.21.1 Introduction

Stepper motor is the most important part of industrial robot 3D printer lathes and other mechanical equipment with
accurate positioning. In this project, we will use ESP32 control ULN2003 stepper motor drive board to drive the stepper
motor to rotate.

9.21.2 Components

ESP32*1 Breadboard*1 ULN2003 Stepper Motor Drive
Board*1

Stepper Motor *1 M-F Dupont Wires USB Cable*1

Battery Holder*1 Keyestudio bread board special power mod-
ule*1

No.5 battery (self-provided)*6

9.21.3 Component knowledge

Stepper motor: It is a motor controlled by a series of electromagnetic coils. It can rotate by the exact number of
degrees (or steps) needed, allowing you to move it to a precise position and keep it there. It does this by supplying

716 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

power to the coil inside the motor in a very short time, but you must always supply power to the motor to keep it in the
position you want. There are two basic types of stepping motors, namely unipolar stepping motor and bipolar stepping
motor. In this project, we use a 28-BYJ48 unipolar stepper motor.

Working Principle:

The stepper motor is mainly composed of a stator and a rotor. The stator is fixed. As shown in the figure below, the
part of the coil group A, B, C, and D will generate a magnetic field when the coil group is energized. The rotor is the
rotating part. As follows, the middle part of the stator, two poles are permanent magnets.

media/32748e0804b1fff434181cb228b23242.png

Single -phase four beat: At the beginning, the coils of group A are turned on, and the poles of the rotor point at A
coil. Next, the group A coil are disconnected, and the group B coils are turned on. The rotor will turn clockwise to the
group B. Then, group B is disconnected, group C is turned on, and the rotor is turned to group C. After that, group C
is disconnected, and group D is turned on, and the rotor is turned to group D. Finally, group D is disconnected, group
A is turned on, and the rotor is turned to group A coils. Therefore, rotor turns 180° and continuously rotates B-C-D-A,
which means it runs a circle (eight phase). As shown below, he rotation principle of stepper motor is A - B C - D - A.

You make order inverse(D - C - B - A - D . . .) if you want to make stepper motor rotate anticlockwise.

media/b8ae50bbdee2dd5bc683e8c450baee6a.png

Half-phase and eight beat: 8 beat adopts single and dual beat wayA - AB B - BC - C - CD - D - DA - A . . . rotor
will rotate half phase in this order. For example, when A coil is electrifiedrotor faces to A coil , then A and B coil are
connected, on this condition, the strongest magnetic field produced lies in the central part of AB coil, which means
rotating half-phase clockwise.

Stepper Motor Parameters:

The rotor rotates one circle when the stepper motor we provide rotates 32 phases and with the output shaft driven by
1:64 reduction geared set. Therefore the rotation (a circle) of output shaft requires 32 * 64 =2048 phases.

The step angle of 4-beat mode of 5V and 4-phase stepper motor is 11.25. And the step angle of 8-beat mode is 5.625,
the reduction ratio is 1:64.

9.21. Project 20Stepping Motor 717

keyestudio WiKi

ULN2003Stepper Motor Drive Board: It is a stepper motor driver, which converts the weak signal into a stronger
control signal to drive the stepper motor.

The following schematic diagram shows how to use the ULN2003 stepper motor driver board interface to connect a
unipolar stepper motor to the pins of the ESP32, and shows how to use four TIP120 interfaces.

media/6fa632d2b70e97dd55565d23ec15d245.png

9.21.4 Wiring Diagram

media/6333a59ee8dd57f7ceb5eaaec8d588df.png

9.21.5 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 20Stepping Mo-
tor\Project_20_Stepping_Motor”.

//**
/*
* Filename : Drive Stepper Motor
* Description : Use ULN2003 to drive the stepper motor.
* Auther : http//www.keyestudio.com
*/
// Conncet the port of the stepper motor driver
int outPorts[] = {15, 16, 17, 18};

void setup() {
// set pins to output
for (int i = 0; i < 4; i++) {
pinMode(outPorts[i], OUTPUT);

}
}

void loop()
{
// Rotate a full turn
moveSteps(true, 32 * 64, 3);
delay(1000);
// Rotate a full turn towards another direction

(continues on next page)

718 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

moveSteps(false, 32 * 64, 3);
delay(1000);

}

//Suggestion: the motor turns precisely when the ms range is between 3 and 20
void moveSteps(bool dir, int steps, byte ms) {
for (unsigned long i = 0; i < steps; i++) {
moveOneStep(dir); // Rotate a step
delay(constrain(ms,3,20)); // Control the speed

}
}

void moveOneStep(bool dir) {
// Define a variable, use four low bit to indicate the state of port
static byte out = 0x01;
// Decide the shift direction according to the rotation direction
if (dir) { // ring shift left
out != 0x08 ? out = out << 1 : out = 0x01;

}
else { // ring shift right
out != 0x01 ? out = out >> 1 : out = 0x08;

}
// Output singal to each port
for (int i = 0; i < 4; i++) {
digitalWrite(outPorts[i], (out & (0x01 << i)) ? HIGH : LOW);

}
}

void moveAround(bool dir, int turns, byte ms){
for(int i=0;i<turns;i++)
moveSteps(dir,32*64,ms);

}
void moveAngle(bool dir, int angle, byte ms){

moveSteps(dir,(angle*32*64/360),ms);
}
//**

9.21.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the four LEDs (D1,D2,D3 ,D4) on the ULN2003 drive module will light up. The stepper motor rotates
clockwise first, then counterclockwise, and repeat these actions in an endless loop.

media/8dc4a0547390e0108c3960c31d330ee7.png

9.21. Project 20Stepping Motor 719

keyestudio WiKi

9.22 Project 21Relay

9.22.1 Introduction

In our daily life, we usually use communication to drive electrical equipments, and sometimes we use switches to
control electrical equipments. If the switch is connected directly to the ac circuit, leakage occurs and people are in
danger. Therefore, from the perspective of safety, we specially designed this relay module with NO(normally open)
end and NC(normally closed) end. In this project, we will learn a relatively special and easy-to-use switch, which is
the relay module.

9.22.2 Components

ESP32*1 Breadboard*1 Relay Module*1 M-F Dupont Wires USB Cable*1

9.22.3 Component knowledge

Relay: It is an “automatic switch” that uses a small current to control the operation of a large current.

Input voltage3.3V-5V

Rated load5A 250VAC (NO/NC) 5A 24VDC (NO/NC)

The rated load means that devices with dc voltage of 24V or AC voltage of 250V can be controlled using 3.3V-5V
microcontrollers.

Schematic diagram of Relay

720 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.22.4 Wiring Diagram

media/1741d3cb0405c740378ef7ef96df6072.png

9.22.5 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 21Relay\Project_21_Relay”.

//**
/*
* Filename : Relay
* Description : Relay turn on and off.
* Auther : http//www.keyestudio.com
*/
#define Relay 15 // defines digital 15
void setup()
{
pinMode(Relay, OUTPUT); // sets "Relay" to "output"
}
void loop()
{
digitalWrite(Relay, HIGH); // turns on the relay
delay(1000); //delays 1 seconds
digitalWrite(Relay, LOW); // turns off the relay
delay(1000); // delays 1 seconds
}
//**

9.22. Project 21Relay 721

keyestudio WiKi

9.22.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the relay will cycle on and off, on for 1 second, off for 1 second. At the same time, you can hear the sound
of the relay on and off, and you can also see the change of the indicator light on the relay.

9.23 Project 22Dimming Light

9.23.1 Introduction

A potentiometer is a three-terminal resistor with sliding or rotating contacts that forms an adjustable voltage divider.
It works by changing the position of the sliding contacts across a uniform resistance. In the potentiometer, the entire
input voltage is applied across the whole length of the resistor, and the output voltage is the voltage drop between the
fixed and sliding contact.

In this project, we will learn how to use ESP32 to read the values of the potentiometer, and make a dimming lamp with
LED.

9.23.2 Components

ESP32*1 Breadboard*1 Potentiometer*1 Red LED*1

220Resistor*1 Jumper Wires USB Cable*1

9.23.3 Component knowledge

Adjustable potentiometer: It is a kind of resistor and an analog electronic component, which has two states of 0 and
1(high level and low level). The analog quantity is different, its data state presents a linear state such as 1 ~ 1024

722 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

ADC : An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or binary
form consisting of 1s and 0s. The range of our ADC on ESP32 is 12 bits, that means the resolution is 2^12=4096, and
it represents a range (at 3.3V) will be divided equally to 4096 parts. The rage of analog values corresponds to ADC
values. So the more bits the ADC has, the denser the partition of analog will be and the greater the precision of the
resulting conversion.

media/f6c45550f4adf8373d7f1d01daec2c64.png

Subsection 1: the analog in rang of 0V—3.3/4095 V corresponds to digital 0;

Subsection 2: the analog in rang of 3.3/4095 V—2*3.3 /4095V corresponds to digital 1;

The following analog will be divided accordingly.

The conversion formula is as follows:

DACThe reversing of this process requires a DAC, Digital-to-Analog Converter. The digital I/O port can output
high level and low level (0 or 1), but cannot output an intermediate voltage value. This is where a DAC is useful. ESP32
has two DAC output pins with 8-bit accuracy, GPIO25 and GPIO26, which can divide VCC

(here is 3.3V) into 2^8=256 parts. For example, when the digital quantity is 1, the output voltage value is 3.3/256 *1 V,
and when the digital quantity is 128, the output voltage value is 3.3/256*128=1.65V, the higher the accuracy of DAC,
the higher the accuracy of output voltage value will be.

The conversion formula is as follows:

ADC on ESP32

ESP32 has 16 pins can be used to measure analog signals. GPIO pin sequence number and analog pin definition are
shown in the following table

9.23. Project 22Dimming Light 723

keyestudio WiKi

ADC number in ESP32 ESP32 GPIO number
ADC0 GPIO 36
ADC3 GPIO 39
ADC4 GPIO 32
ADC5 GPIO33
ADC6 GPIO34
ADC7 GPIO 35
ADC10 GPIO 4
ADC11 GPIO0
ADC12 GPIO2
ADC13 GPIO15
ADC14 GPIO13
ADC15 GPIO 12
ADC16 GPIO 14
ADC17 GPIO27
ADC18 GPIO25
ADC19 GPIO26

DAC on ESP32

ESP32 has two 8-bit digital analog converters to be connected to GPIO25 and GPIO26 pins, respectively, and it is
immutable. As shown in the following table

Simulate pin number GPIO number
DAC1 GPIO25
DAC2 GPIO26

The DAC pin number is already defined in ESP32’s code base; for example, you can replace GPIO25 with DAC1 in
the code.

9.23.4 Read the ADC valueDAC value and voltage value of the potentiometer

We connect the potentiometer to the analog IO port of ESP32 to read the ADC valueDAC value and voltage value of
the potentiometer, please refer to the wiring diagram below

media/0cda3256a0930404abc097ec8ffa3013.png

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 22Dimming
Light\Project_22.1_Read_Potentiometer_Analog_Value”.

//**
/*
* Filename : Read Potentiometer Analog Value

(continues on next page)

724 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

* Description : Basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the Potentiometer

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value. The input and␣
→˓output voltage are calculated according to the previous formula, and the information␣
→˓is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You need to press the reset button on the ESP32 mainboard first, and
then you will see that the serial port monitor window will print out the ADC valueDAC value and voltage value of the
potentiometer. When turning the potentiometer handle, the ADC valueDAC value and voltage value will change. As
shown below:

9.23. Project 22Dimming Light 725

keyestudio WiKi

9.23.5 Wiring diagram of the dimming lamp

In the previous step, we read the ADC valueDAC value and voltage value of the potentiometer. Now we need to convert
the ADC value of the potentiometer into the brightness of the LED to make a lamp that can adjust the brightness.The
wiring diagram is as follows:

media/3396bd77169711de6e15da73f14c8afb.png

9.23.6 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 22Dimming
Light\Project_22.2_Dimming_Light”.

//**
/*
* Filename : Dimming Light
* Description : Controlling the brightness of LED by potentiometer.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the potentiometer
#define PIN_LED 15 // the pin of the LED
#define CHAN 0
void setup() {
ledcSetup(CHAN, 1000, 12);
ledcAttachPin(PIN_LED, CHAN);

}

void loop() {
int adcVal = analogRead(PIN_ANALOG_IN); //read adc
int pwmVal = adcVal; // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}
//**

9.23.7 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that turn the potentiometer handle and the brightness of the LED will change accordingly.

726 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

media/eca30dead3f4923afa0dcb0306db2319.jpeg

9.24 Project 23Flame Alarm

9.24.1 Introduction

Fire is a terrible disaster and fire alarm systems are very useful in housescommercial buildings and factories. In this
project, we will use ESP32 to control a flame sensor, a buzzer and a LED to simulate fire alarm devices. This is a
meaningful maker activity.

9.24.2 Components

ESP32*1 Breadboard*1 Red LED*1 Active Buzzer*1

Flame Sensor*1 220Resistor*1 10KResistor*1 Jumper Wires

NPN transistor(S8050)*1 1k Resistor*1 USB Cable*1

9.24.3 Component knowledge

The flame emits a certain amount IR light that is invisible to the human eye, but our flame sensor can detect it and
alert a microcontroller(such as ESP32) that a fire has been detected. It has a specially designed infrared receiver tube
to detect the flame and then convert the flame brightness into a fluctuating level signal. The short pin of the receiving
triode is negative pole and the other long pin is positive pole. We should connect the short pin (negative) to 5V and the
long pin(positive) to the analog pin, a resistor and GND. As shown in the figure below

9.24. Project 23Flame Alarm 727

keyestudio WiKi

media/87bd204db523c602c80745266c1ee452.png

Note: Since vulnerable to radio frequency radiation and temperature changes, the flame sensor should be kept away
from heat sources like radiators, heaters and air conditioners, as well as direct irradiation of sunlight, headlights and
incandescent light.

9.24.4 Read the ADC valueDAC value and voltage value of the flame sensor

We first use a simple code to read the ADC valueDAC value and voltage value of the flame sensor and print them out.
Please refer to the wiring diagram below

media/76ce57355da1df27e049bdc6e19f0650.png

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 23Flame
Alarm\Project_23.1_Read_Analog_Value_Of_Flame_Sensor”.

//**
/*
* Filename : Read Analog Value Of Flame Sensor
* Description : Basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the Flame sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value. The input and␣
→˓output voltage are calculated according to the previous formula, and the information␣
→˓is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

728 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You need to press the reset button on the ESP32 mainboard first, and
then you will see that the serial port monitor window will print out the ADC valueDAC value and voltage value of the
flame sensor. When the sensor is closed to fire,the ADC valueDAC value and voltage value will get greater.Conversely,
the ADC valueDAC value and voltage value decrease.

9.24.5 Wiring diagram of the flame alarm

Next, we will use a flame sensor, a buzzer, and a LED to make an interesting project, that is flame alarm. When flame
is detected, the LED flashes and the buzzer alarms.

media/e9fa0e50df23c1f2e58fdd319ad21b4c.png

9.24.6 Project code

Note

media/40a3ea572836945268b22dfc0cce29c3.png

the threshold of 500 in the code can be reset itself as required)

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 23Flame
Alarm\Project_23.2_Flame_Alarm”.

9.24. Project 23Flame Alarm 729

keyestudio WiKi

//**
/*
* Filename : Flame Alarm
* Description : Controlling the buzzer and LED by flame sensor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ADC0 36 //the pin of the flame sensor
#define PIN_LED 15 // the pin of the LED
#define PIN_BUZZER 4 // the pin of the buzzer

void setup() {
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_BUZZER, OUTPUT);
pinMode(PIN_ADC0, INPUT);

}

void loop() {
int adcVal = analogRead(PIN_ADC0); //read the ADC value of flame sensor
if (adcVal >= 500) {
digitalWrite (PIN_BUZZER, HIGH); //turn on buzzer
digitalWrite(PIN_LED, HIGH); // turn on LED
delay(500); // wait a second.
digitalWrite (PIN_BUZZER, LOW);
digitalWrite(PIN_LED, LOW); // turn off LED
delay(500); // wait a second

}
else
{

digitalWrite(PIN_LED, LOW); //turn off LED
digitalWrite (PIN_BUZZER, LOW); //turn off buzzer

}
}
//**

9.24.7 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that when the flame sensor detects the flame, the LED will flash and the buzzer will alarm; otherwise, the LED
does not light up and the buzzer does not sound.

9.25 Project 24Night Lamp

9.25.1 Introduction

Sensors or components are ubiquitous in our daily life. For example, some public street lamps will automatically turn
on at night and turn off during the day. Why? In fact, this make use of a photosensitive element that senses the intensity
of external ambient light. When the outdoor brightness decreases at night, the street lights will turn on automatically;
In the daytime, the street lights will automatically turn off. the principle of which is very simple, In this Project, we
use ESP32 to control a LED to achieve the effect of the street light.

730 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.25.2 Components

ESP32*1 Breadboard*1 Red LED*1 10KResistor*1

Photoresistor*1 220Resistor*1 Jumper Wires USB Cable*1

9.25.3 Component knowledge

Photoresistor : It is a kind of photosensitive resistance, its principle is that the photoresistor surface receives brightness
(light) to reduce the resistance, the resistance value will change with the detected intensity of the ambient light . With
this characteristic, we can use the photosensitive resistance to detect the light intensity. Photosensitive resistance and
its electronic symbol are as follows

media/7d575da675a2f6cb511d28b801e2abaa.png

The following circuit is used to detect changes in resistance values of photoresistors

media/5a7f7e641eb78007760a94151c1d80a5.png

In the circuit above, when the resistance of the photoresistor changes due to the change of light intensity, the voltage
between thephotoresistor and resistance R2 will also change. Thus, the intensity of light can be obtained by measuring
this voltage.

4. Read the ADC valueDAC value and voltage value of the photoresistor
We first use a simple code to read the ADC valueDAC value and voltage value of the photoresistor and print them out.
Please refer to the following wiring diagram

9.25. Project 24Night Lamp 731

keyestudio WiKi

media/b762098c798beb08e4d433137c317dc7.png

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 24Night
Lamp\Project_24.1_Read_Photosensitive_Analog_Value”.

//**
/*
* Filename : Read Photosensitive Analog Value
* Description : Basic usage of ADC
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the photosensitive sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value. The input and␣
→˓output voltage are calculated according to the previous formula, and the information␣
→˓is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You need to press the reset button on the ESP32 mainboard first, and
then you will see that the serial port monitor window will print out the ADC value, DAC value and voltage value of the
photoresistor. When the light intensity around the photoresistor is gradually reduced, the ADC value, DAC value and
voltage value will gradually increase. On the contrary, the ADC valueDAC value and voltage value decreases gradually.

732 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.25.4 Wiring diagram of the light-controlled lamp

We made a small dimming lamp in the front, now we will make a light controlled lamp. The principle is the same, that
is, the ESP32 takes the ADC value of the sensor, and then adjusts the brightness of the LED.

media/77a0c534501f51e7fe7aa221e4db71d9.png

9.25.5 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder**“Arduino-Codes\Project 24Night
Lamp\Project_24.2_Night_Lamp”**.

//**
/*
* Filename : Night Lamp
* Description : Controlling the brightness of LED by photosensitive sensor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 // the pin of the photosensitive sensor
#define PIN_LED 15 // the pin of the LED
#define CHAN 0
#define LIGHT_MIN 372
#define LIGHT_MAX 2048
void setup() {
ledcSetup(CHAN, 1000, 12);

(continues on next page)

9.25. Project 24Night Lamp 733

keyestudio WiKi

(continued from previous page)

ledcAttachPin(PIN_LED, CHAN);
}

void loop() {
int adcVal = analogRead(PIN_ANALOG_IN); //read adc
int pwmVal = map(constrain(adcVal, LIGHT_MIN, LIGHT_MAX), LIGHT_MIN, LIGHT_MAX, 0,␣

→˓4095); // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}
//**

9.25.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that when the intensity of light around the photoresistor is reduced, the LED will be bright, on the contraty,
the LED will be dim.

9.26 Project 25Human Induction Lamp

9.26.1 Introduction

Human body induction lamp is used commonly in the dark corridor area. With the development of science and technol-
ogy, the use of the human body induction lamp is very common in our real life, such as the corridor of the community,
the bedroom of the room, the garage of the dungeon, the bathroom and so on. The human induction lamp are generally
composed of a human body infrared sensor, a led, a photoresistor sensor and so on.

In this project, we will learn how to use a Human Body Infrared Sensor, a led, and a photoresistor to make a human
induction lamp.

9.26.2 Components

ESP32*1 Breadboard*1 Red LED*1 10KResistor*1 Jumper
Wires

USB Cable*1

Photoresistor*1 Human Body Infrared
Sensor*1

220Resistor*1 M-F Dupont
Wires

734 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.26.3 Wiring Diagram

media/69f49d65054a9246acf4adc534217027.png

9.26.4 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 25Human Induction
Lamp\Project_25_Human_ Induction_Lamp”.

//**
/*
* Filename : Human Induction Lamp
* Description : Controlling the LED by photosensitive sensor and PIR motion sensor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ADC0 36 //the pin of the photosensitive sensor
#define PIN_LED 4 // the pin of the LED
#define pirPin 15 // the pin of the PIR motion sensor
byte pirStat = 0; // the state of the PIR motion sensor
void setup() {

Serial.begin(115200);
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_ADC0, INPUT);
pinMode(pirPin, INPUT);

}

void loop() {
int adcVal = analogRead(PIN_ADC0); //read the ADC value of photosensitive sensor
pirStat = digitalRead(pirPin); //read the value of PIR motion sensor
if (adcVal >= 2000) {

if (pirStat == HIGH){
digitalWrite(PIN_LED, HIGH);//turn on the LED
}

else{
digitalWrite(PIN_LED, LOW);//turn off the LED
}

}
else{

digitalWrite(PIN_LED, LOW);//turn off the LED
}

}
//**

9.26. Project 25Human Induction Lamp 735

keyestudio WiKi

9.26.5 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see thatWhen your hand covers the photosensitive part of the photoresistor to simulate darkness, then shake your
other hand in front of the Human Body Infrared Sensor, the external LED will light up. If the photosensitive part of
the photoresistor is not covered, then shake your hand in front of the human infrared sensor and the LED is turned off.

9.27 Project 26Sound Control Fan

9.27.1 Introduction

The sound sensor has a built-in capacitive electret microphone and power amplifier which can be used to detect the
sound intensity of the environment. In this project, we use ESP32 to control the sound sensor and the motor module to
simulate a voice-controlled fan.

9.27.2 Components

ESP32*1 Breadboard*1 Sound Sensor*1

130 Motor Module*1 M-F Dupont Wires USB Cable*1

Keyestudio bread board special power mod-
ule*1

Battery Holder*1 No.5 battery (self-
provided)*6

Fan*1

736 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.27.3 Component knowledge

Sound sensor is usually used to detect the loudness of the sound in the surrounding environment. Microcontrol board
can collect its output signal through the analog input interface.The S pin is an analog output, which is the real-time
output of the microphone voltage signal. The sensor comes with a potentiometer so you can adjust the signal strength.
It also has two fixing holes so that the sensor can be installed on any other equipment. You can use it to make some
interactive works, such as voice-operated switches.

9.27.4 Read the ADC valueDAC value and voltage value of the sound sensor

We first use a simple code to read the ADC valueDAC value and voltage value of the sound sensor and print them out.
Please refer to the wiring diagram below

media/87fb44c475d1f53aa5905cebfed55ea2.png

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 26Sound Control
Fan\Project_26.1_Read_Sound_Sensor_Analog_Value”.

//**
/*
* Filename : Read Sound Sensor Analog Value
* Description : Basic usage of ADC
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the Sound Sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value. The input and␣
→˓output voltage are calculated according to the previous formula, and the information␣

(continues on next page)

9.27. Project 26Sound Control Fan 737

keyestudio WiKi

(continued from previous page)

→˓is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open
the serial monitor and set the baud rate to 115200. You need to press the reset button on the ESP32 mainboard first,
and then you will see that the serial port monitor window will print out the ADC valueDAC value and voltage value
of the sound sensor.When you clap your hands to the sensor, the ADC valueDAC value and voltage value will change
significantly.

9.27.5 Wiring diagram of the intelligent fan

Next, we officially entered the project. We used a sound sensora motor module and a fan blade to simulate a voice-
controlled fan. The wiring diagram is as follows

media/5a08d512265e03c997bf81a9e2bfecbb.png

(Note: Connect the wires and then install a small fan blade on the DC motor.)

738 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.27.6 Project code

Note

media/c20911df19d11290cf099072fe250029.png

The threshold 600 in the code can be reset itself as needed)

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 26Sound Control
Fan\Project_26.2_Sound_Control_Fan”.

//**
/*
* Filename : Sound Control Fan
* Description : Controlling the fan by Sound sensor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ADC0 36 //the pin of the Sound sensor
#define PIN_Motorla 15 // the Motor_IN+ pin of the motor
#define PIN_Motorlb 2 // the Motor_IN- pin of the motor

void setup() {
pinMode(PIN_Motorla, OUTPUT);//set Motorla to OUTPUT
pinMode(PIN_Motorlb, OUTPUT);//set Motorlb to OUTPUT
pinMode(PIN_ADC0, INPUT);//set PIN_ADC2 to INPUT

}

void loop() {
int adcVal = analogRead(PIN_ADC0); //read the ADC value of Sound sensor
if (adcVal > 600) {
digitalWrite(PIN_Motorla,HIGH); //rotate
digitalWrite(PIN_Motorlb,LOW);
delay(5000); //delay 5S

}
else
{
digitalWrite(PIN_Motorla,LOW); //stop rotating
digitalWrite(PIN_Motorlb,LOW);

}
}
//**

9.27. Project 26Sound Control Fan 739

keyestudio WiKi

9.27.7 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, external power supply and power on.
and then you will see that clap your hands to the sound sensor, and when the sound intensity exceeds a threshold, the
small fan rotates; conversely, the small fan doesn’t rotate.

9.28 Project 27Temperature Measurement

9.28.1 Introduction

LM35 is a common used and easy-to-use temperature sensor. It doesn’t require any other hardware and you only need
an analog port. The difficulty lies in compiling the code and converting the analog values to Celsius temperature. In
this project, we used a temperature sensor and 3 LEDs to make a temperature tester. When the temperature sensor
touches different temperature objects, the LEDs will show different colors.

9.28.2 Components

ESP32*1 Breadboard*1 LM35*1 USB Ca-
ble*1

M-F Dupont
Wires

Jumper
Wires

220 Resistor*3 Red LED*1 Yellow LED*1 Green
LED*1

9.28.3 Component knowledge

Working principle of LM35 temperature sensor: LM35 temperature sensor is a widely used temperature sensor with
a variety of package types. At room temperature, it can achieve the accuracy of 1/4°C without additional calibration
processing. LM35 temperature sensor can produce different voltage according to different temperatures, when the

740 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

temperature is 0 ℃, it output 0V; If increasing 1 ℃, the output voltage will increase 10mv. The output temperature is
0℃ to 100℃, the conversion formula is as follows

media/0dfa07fa69f2a98658a3822c2da93bf7.jpeg

9.28.4 Read the temperature value of LM35

We first use a simple code to read the value of the temperature sensor and printing them out, wiring diagram is shown
below

media/041471b9fabd75ef9dc3951598e342f8.png

LM35 output is given to analog pin GPIO36 of the ESP32, this analog voltage is converted to its digital form and
processed to get the temperature reading.

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 27Temperature Measure-
ment\Project_27.1_Read_LM35_Temperature_Value.

//**
/*
* Filename : Read LM35 Temperature Value
* Description : ADC value is converted to LM35 temperature value
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the Temperature Sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value. Calculate the␣
→˓measured voltage value,Celsius and Fahrenheit valuesthrough the formula, and print␣
→˓these data through the serial port monitor.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
float temperatureC = (voltage * 1000.0) / 10.0 ;
float temperatureF = (temperatureC * 1.8) + 32.0;
Serial.print("ADC Value: " + String(adcVal));
Serial.print("--DAC Value: " + String(dacVal));

(continues on next page)

9.28. Project 27Temperature Measurement 741

keyestudio WiKi

(continued from previous page)

Serial.print("--Voltage Value: " + String(voltage) + "V");
Serial.print("--temperatureC: " + String(temperatureC) + "℃");
Serial.println("--temperatureF: " + String(temperatureF) + "F");
delay(200);

}
//**

9.28.5 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You need to press the reset button on the ESP32 mainboard first, and then
you will see that the serial port monitor window will print out the temperature values read by the LM35 temperature
sensor. Hold the LM35 element by hand, the temperature value read by the LM35 temperature sensor will change.

9.28.6 Wiring diagram

Now we use a LM35 temperature sensor and three LED lights to do a temperature test. When the LM35 temperature
sensor senses different temperatures, different LED lights will light up. Follow the diagram below for wiring.

media/831ebf50a9b59c744cbd93ac2170d64b.png

742 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.28.7 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 27Temperature Measure-
ment\Project_27.2_Temperature_Measurement”.

(Note: The temperatureC threshold in the code can be reset itself as required.)

//**
/*
* Filename : Temperature Measurement
* Description : Different leds light up when the LM35 senses different temperatures
* Auther : http//www.keyestudio.com
*/
#define PIN_ADC0 36 //the pin of the LM35 Sensor
#define PIN_GREENLED 4 //the pin of the Green led
#define PIN_YELLOWLED 2 //the pin of the Yellow led
#define PIN_REDLED 15 //the pin of the Red led
void setup() {
Serial.begin(115200);
pinMode(PIN_GREENLED, OUTPUT); //set PIN_GREENLED to OUTPUT
pinMode(PIN_YELLOWLED, OUTPUT);//set PIN_YELLOWLED to OUTPUT
pinMode(PIN_REDLED, OUTPUT);//set PIN_REDLED to OUTPUT
pinMode(PIN_ADC0, INPUT);//set PIN_ADC0 to INPUT

}

void loop() {
int adcVal = analogRead(PIN_ADC0);
double voltage = adcVal / 4095.0 * 3.3;
float temperatureC = (voltage * 1000.0) / 10.0 ;
float temperatureF = (temperatureC * 1.8) + 32.0;
Serial.print("ADC Value: " + String(adcVal));
Serial.print("---Voltage Value: " + String(voltage) + "V");
Serial.print("---temperatureC: " + String(temperatureC) + "℃");
Serial.println("---temperatureF: " + String(temperatureF) + "F");
if (temperatureC >= 25) {
delay(100);
digitalWrite(PIN_GREENLED, LOW);
digitalWrite(PIN_YELLOWLED, LOW);
digitalWrite(PIN_REDLED, HIGH);

}
else if (temperatureC >= 20 && temperatureC < 25) {
digitalWrite(PIN_GREENLED, LOW);
digitalWrite(PIN_YELLOWLED, HIGH);
digitalWrite(PIN_REDLED, LOW);

}
else {
digitalWrite(PIN_GREENLED, HIGH);
digitalWrite(PIN_YELLOWLED, LOW);
digitalWrite(PIN_REDLED, LOW);

}

(continues on next page)

9.28. Project 27Temperature Measurement 743

keyestudio WiKi

(continued from previous page)

delay(500);
}
//**

9.28.8 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you will
see that the monitor displays the temperature values read by the LM35 temperature sensor. When the LM35 temperature
sensor senses different temperatures, different LEDS will light up.

9.29 Project 28Rocker control light

9.29.1 Introduction

The rocker module is a component with two analog inputs and one digital input. It is widely used in areas such as game
operation, robot control and drone control.

In this project, we use ESP32 and a joystick module to control RGB, so that you can have a deeper understanding of
the principle and operation of the joystick module in practice.

9.29.2 Components

ESP32*1 Breadboard*1 Rocker Module*1 USB Cable*1 M-F Dupont
Wires

RGB LED*1 220Resistor*3 Jumper Wires

744 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.29.3 Component knowledge

Rocker module: It mainly uses PS2 joystick components. In fact, the joystick module has 3 signal terminal pins,
which simulate a three-dimensional space. The pins of the joystick module are GND, VCC, and signal terminals (B, X,
Y). The signal terminals X and Y simulate the X-axis and Y-axis of the space. When controlling, the X and Y signal
terminals of the module are connected to the analog port of the microcontroller. The signal terminal B simulates the Z
axis of the space, it is generally connected to the digital port and used as a button.

VCC is connected to the microcontroller power output VCC (3.3V or 5V), GND is connected to the microcontroller
GND, the voltage in the original state is about 1.65V or 2.5V. In the X-axis direction, when moving in the direction
of the arrow, the voltage value increases, and the maximum voltage can be reached. Moving in the opposite direction
of the arrow, the voltage value gradually decreases to the minimum voltage. In the Y-axis direction, the voltage value
decreases gradually as it moves in the direction of the arrow on the module, decreasing to the minimum voltage. As
the arrow is moved in the opposite direction, the voltage value increases and can reach the maximum voltage. In the
Z-axis direction, the signal terminal B is connected to the digital port and outputs 0 in the original state and outputs 1
when pressed. In this way, we can read the two analog values and the high and low level conditions of the digital port
to determine the operating status of the joystick on the module.

Features:

• Input VoltageDC 3.3V ~ 5V

• Output SignalX/Y dual axis analog value +Z axis digital signal

• Rang of ApplicationSuitable for control point coordinate movement in plane as well as control of two degrees of
freedom steering gear, etc.

• Product FeaturesExquisite appearance, joystick feel superior, simple operation, sensitive response, long service
life.

9.29.4 Read the value of the Rocker Module

We must use ESP32’s analog IO port to read the value from the X/Y pin of the rocker module and use the digital IO
port to read the digital signal of the button. Please connect the wires according to the wiring diagram below

media/b611755eacc4c603e6c0555aced929cb.png

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder**“Arduino-Codes\Project 28Rocker control
light\Project_28.1_Read_Rocker_Value”**.

9.29. Project 28Rocker control light 745

keyestudio WiKi

//**
/*
* Filename : Read Rocker Value
* Description : Read data from Rocker.
* Auther : http//www.keyestudio.com
*/
int xyzPins[] = {36, 39, 14}; //x,y,z pins
void setup() {
Serial.begin(115200);
pinMode(xyzPins[0], INPUT); //x axis.
pinMode(xyzPins[1], INPUT); //y axis.
pinMode(xyzPins[2], INPUT_PULLUP); //z axis is a button.

}

// In loop(), use analogRead () to read the value of axes X and Y and use digitalRead ()␣
→˓to read the value of axis Z, then display them.
void loop() {
int xVal = analogRead(xyzPins[0]);
int yVal = analogRead(xyzPins[1]);
int zVal = digitalRead(xyzPins[2]);
Serial.println("X,Y,Z: " + String(xVal) + ", " + String(yVal) + ", " + String(zVal));
delay(500);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You need to press the reset button on the ESP32 mainboard first, and
then you will see that the serial port monitor window will print out the analog and digital values of the current joystick.
Moving the joystick or pressing it will change the analog and digital values.

media/06a9de681779df5cfc7e6bc24a928a3a.jpeg

746 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.29.5 Wiring diagram of Rocker control light

We just read the value of the rocker module, we need to do something with the rocker module and RGB here, Follow
the diagram below for wiring

media/4ec49b488fedf216d03e49f83bc8443a.png

9.29.6 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 28Rocker control lightPro-
ject_28.2_Rocker_Control_Light”.

//**
/*
* Filename : Rocker Control Light
* Description : Control RGB to light different colors by Rocker.
* Auther : http//www.keyestudio.com
*/
int x_Pin = 36; //x pin
int y_Pin = 39; //y pin
int z_Pin = 14; //z pin
int ledPins[] = {4, 0, 2}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels

void setup() {
(continues on next page)

9.29. Project 28Rocker control light 747

keyestudio WiKi

(continued from previous page)

pinMode(x_Pin, INPUT); //x axis.
pinMode(y_Pin, INPUT); //y axis.
pinMode(z_Pin, INPUT_PULLUP); //z axis is a button.
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

// In loop(), use analogRead () to read the value of axes X and Y and use digitalRead ()␣
→˓to read the value of axis Z, then display them.
void loop() {
int xVal = analogRead(x_Pin);
int yVal = analogRead(y_Pin);
int zVal = digitalRead(z_Pin);
if (xVal < 1000){

ledcWrite(chns[0], 255); //Common cathode LED, high level to turn on the led.
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 0);

}
else if (xVal > 3000){

ledcWrite(chns[0], 0);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 0);

}
else if (yVal < 1000){

ledcWrite(chns[0], 0);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 255);

}
else if (yVal > 3000){

ledcWrite(chns[0], 255);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 255);

}
}
//**

9.29.7 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that If the rocker is moved to the far left in the X direction, the RGB light turns red. If the rocker is moved to
the far right in the X direction, the RGB light turns green. If the rocker is moved to the up in the Y direction, the RGB
light turns white. If the rocker is moved to the down in the Y direction, the RGB light turns blue.

media/9c2d0d8777200827b16c49b752d45c4c.jpeg

748 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.30 Project 29Temperature Humidity Meter

9.30.1 Introduction

In winter, the humidity in the air is very low, that is, the air is very dry, Coupled with cold, the skin of the human body
is easy to be too dry and cracked, so you need to use a humidifier to increase the humidity of the air at home, but how
do you know that the air is too dry? Then you need equipment to detect air humidity. In this Project, we will how to
use the temperature and humidity sensor. We use the sensor to make a thermohygrometer, and also combined with a
LCD 128X32 DOT to display the temperature and humidity values.

9.30.2 Components

ESP32*1 Breadboard*1 Temperature and Humidity Sensor*1

LCD 128X32 DOT*1 M-F Dupont Wires USB Cable*1

9.30.3 Component knowledge

Temperature and humidity sensor: It is a temperature and humidity composite sensor with calibrated digital signal
output, its precision humidity is±5%RH, temperature is±2℃, range humidity is 20 to 90%RH, and temperature is 0 to
50℃. The temperature and humidity sensor applies dedicated digital module acquisition technology and temperature
and humidity sensing technology to ensure extremely high reliability and excellent long-term stability of the product.
The temperature and humidity sensor includes a resistive-type humidity measurement and an NTC temperature mea-
surement component, which is very suitable for temperature and humidity measurement applications where accuracy
and real-time performance are not required.

The operating voltage is in the range of 3.3V to 5.5V.

The temperature and humidity sensor has three pins, which are VCC, GND and S. S is the pin for data output, using
serial communication.

Single bus format definition of Temperature and Humidity Sensor

9.30. Project 29Temperature Humidity Meter 749

keyestudio WiKi

De-
scrip-
tion

Definition

Start
signal

Microprocessor pulls data bus (SDA) down at least 18ms for a period of time(Maximum is 30ms), noti-
fying the sensor to prepare data.

Re-
sponse
signal

The sensor pulls the data bus (SDA) low for 83µs, and then pulls up for 87µs to respond to the host’s start
signal.

Hu-
midity

The high humidity is an integer part of the humidity data, and the low humidity is a fractional part of the
humidity data.

Tem-
pera-
ture

The high temperature is the integer part of the temperature data, the low temperature is the fractional part
of the temperature data. And the low temperature Bit8 is 1, indicating a negative temperature, otherwise,
it is a positive temperature.

Parity
bit

Parity bit=Humidity high bit+ Humidity low bit+temperature high bit+temperature low bit

//**
/*
* Filename : Temperature and Humidity Sensor
* Description : Use XHT11 to measure temperature and humidity.Print the result to the␣
→˓serial port.
* Auther : http//www.keyestudio.com
*/
#include "xht11.h"
//gpio13
xht11 xht(13);

unsigned char dht[4] = {0, 0, 0, 0};//Only the first 32 bits of data are received, not␣
→˓the parity bits
void setup() {

Serial.begin(115200);//Start the serial port monitor and set baud rate to 115200
}

void loop() {
if (xht.receive(dht)) { //Returns true when checked correctly
Serial.print("RH:");
Serial.print(dht[0]); //The integral part of humidity, DHT [0] is the fractional part
Serial.print("% ");
Serial.print("Temp:");
Serial.print(dht[2]); //The integral part of temperature, DHT [3] is the fractional␣

→˓part
Serial.println("C");

} else { //Read error
Serial.println("sensor error");

}
delay(1000); //It takes 1000ms to wait for the device to read

}
//**

Data sequence diagram of Temperature and Humidity Sensor

When MCU sends a start signal, the Temperature and Humidity Sensor changes from the low-power-consumption

750 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

mode to the high-speed mode, waiting for MCU completing the start signal. Once it is completed, the Temperature and
Humidity Sensor sends a response signal of 40-bit data and triggers a signal acquisition. The signal is sent as shown

in the figure:

media/933ac5e5a5e921d4b16c7c48091ba75a.png

Combined with the code, you can understand better.

The XHT11 temperature and humidity sensor can easily add temperature and humidity data to your DIY electronic
projects. It is perfect for remote weather stations, home environmental control systems, and farm or garden monitoring
systems.

Specification:

Working voltage: +5V

Temperature range: 0°C to 50°C, error of ± 2°C

Humidity range: 20% to 90% RH,± 5% RH error

Digital interface

Schematic diagram of Temperature and Humidity Sensor:

9.30.4 Read temperature and humidity value

media/5d6dd3f19b4323d212bb95e3e4d43743.png

How to add the xht11 library

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

9.30. Project 29Temperature Humidity Meter 751

keyestudio WiKi

This code uses a library named “xht11”, if you haven’t installed it yet, please do so before learning. The steps to add
third-party libraries are as follows:

After the xht11 library was added, You can open the code we provideIf you haven’t downloaded the code file, please
click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 29Temperature Humidity Me-
ter\Project_29.1_Detect_Temperature_Humidity”.

//**
/*
* Filename : Temperature and Humidity Sensor
* Description : Use XHT11 to measure temperature and humidity.Print the result to the␣
→˓serial port.
* Auther : http//www.keyestudio.com
*/
#include "xht11.h"
//gpio13
xht11 xht(13);

unsigned char dht[4] = {0, 0, 0, 0};//Only the first 32 bits of data are received, not␣
→˓the parity bits
void setup() {

Serial.begin(115200);//Start the serial port monitor and set baud rate to 115200
}

void loop() {
if (xht.receive(dht)) { //Returns true when checked correctly
Serial.print("RH:");
Serial.print(dht[0]); //The integral part of humidity, DHT [0] is the fractional part
Serial.print("% ");
Serial.print("Temp:");
Serial.print(dht[2]); //The integral part of temperature, DHT [3] is the fractional␣

→˓part
Serial.println("C");

} else { //Read error
Serial.println("sensor error");

}
delay(1000); //It takes 1000ms to wait for the device to read

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, and open
the serial monitor and then set baud rate to 115200. You need to press the reset button on the ESP32 mainboard first,
and then you will see the current temperature and humidity value detected by the sensor from the serial monitor. As
shown in the following figure:

752 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

5. Wiring diagram of the thermohygrometer

Now we start to print the values of the temperature and humidity sensor with LCD_128X32_DOT. We will see the
corresponding values on the screen of LCD_128X32_DOT. Let’s get started with this project. Please connect cables
according to the following wiring diagram

media/6c82bb28bd1fcd7a1f72108e8a4a70b6.png

9.30.5 Project code

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

The xht11 and lcd128_32_io libraries have been added previously, so you don’t need to add them again. If not, you
need to add the xht11 and lcd128_32_io libraries. The steps to add third-party Libraries are as follows:

After the xht11 and lcd128_32_io libraries were added, You can open the code we provideIf you haven’t downloaded
the code file, please click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 29Temperature Humidity Me-
ter\Project_29.2_Temperature_Humidity_Meter”.

//**
/*
* Filename : Temperature Humidity Meter
* Description : LCD displays the value of temperature and humidity.
* Auther : http//www.keyestudio.com
*/
#include "xht11.h"
#include "lcd128_32_io.h"

(continues on next page)

9.30. Project 29Temperature Humidity Meter 753

keyestudio WiKi

(continued from previous page)

//gpio13
xht11 xht(13);
unsigned char dht[4] = {0, 0, 0, 0};//Only the first 32 bits of data are received, not␣
→˓the parity bits

lcd lcd(21, 22); //Create lCD128 *32 pinsda->21 scl->22

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //clear

}
char string[10];

//lcd displays humidity and temperature values
void loop() {
if (xht.receive(dht)) { //Returns true when checked correctly
}

lcd.Cursor(0,0); //Set display position
lcd.Display("Temper:"); //Setting the display
lcd.Cursor(0,8);
lcd.DisplayNum(dht[2]);
lcd.Cursor(0,11);
lcd.Display("C");
lcd.Cursor(2,0);
lcd.Display("humid:");
lcd.Cursor(2,8);
lcd.DisplayNum(dht[0]);
lcd.Cursor(2,11);
lcd.Display("%");
delay(200);

}
//**

9.30.6 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the LCD 128X32 DOT will display temperature and humidity value in the current environment.

9.31 Project 30Ultrasonic Ranger

9.31.1 Introduction

The HC-SR04 ultrasonic sensor is a very affordable distance sensor, mainly used for obstacle avoidance in various
robotic projects. It is also used for water level sensing and even as a parking sensor. We treat the ultrasonic sensors as
bat’s eyes, in the dark, bats can still identify objects in front of them and directions through ultrasound. In this project,
we use ESP32 to control a ultrasonic sensor and LEDs to simulate ultrasonic rangefinder.

754 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.31.2 Components

ESP32*1 Breadboard*1 Ultrasonic Sensor*1 Red LED*4

M-F Dupont Wires 220Resistor*4 Jumper Wires USB Cable*1

9.31.3 Component knowledge

HC-SR04 Ultrasonic Sensor : Like bats, sonar is used to determine the distance to an object. It provides accurate non-
contact range detection, high-precision and stable readings. Its operation is not affected by sunlight or black materials,
just like a precision camera(acoustically softer materials like cloth are difficult to detect). It has an ultrasonic transmitter
and receiver.

media/e6f6037071e434febf7090b56ac35802.png

In front of the ultrasonic sensor are two metal cylinders, these are the converters. The converters convert the mechanical
energy into an electrical signal. In the ultrasonic sensor, there are transmitting converters and receiving converters.
The transmitting converter converts the electric signal into an ultrasonic pulse, and the receiving converter converts the
reflected ultrasonic pulse back to an electric signal. If you look at the back of the ultrasonic sensor, you will see an IC
behind the transmitting converter, which controls the transmitting converter. There is also an IC behind the receiving
converter, which is a quad operational amplifier that amplifies the signal generated by the receiving converter into a
signal large enough to be transmitted to the Microcontroller.

Sequence diagrams:

The figure shows the sequence diagram of the HC-SR04. To start the measurement, the Trig of SR04 must receive at
least 10us high pulse(5V), which will activate the sensor to emit 8 cycles of 40kHz ultrasonic pulses, and wait for the
reflected ultrasonic pulses. When the sensor detects ultrasound from the receiver, it sets the Echo pin to high (5V) and
delays it by one cycle (width), proportional to the distance. To get the distance, measure the width of the Echo pin.

9.31. Project 30Ultrasonic Ranger 755

keyestudio WiKi

media/4114885ac4b6214953e3224d8c1d52c4.png

Time = Echo pulse width, its unit is “us” (microseconds)

Distance in centimeters = time / 58

Distance in inches = time / 148

9.31.4 Read the distance value of the ultrasonic sensor:

We will start with a simple ultrasonic ranging and print the measured distance.

media/db430baa07e2e4d9ac9efca1950b953a.jpeg

The HC-SR04 ultrasonic sensor has four pins, they are Vcc, Trig, Echo and GND. The Vcc pin provides the power
source for generating ultrasonic pulses and is connected to Vcc (+5V). The GND pin is grounded. The Trig pin is where
the Arduino sends a signal to start the ultrasonic pulse. The Echo pin is where the ultrasonic sensor sends information
about the duration of the ultrasonic pulse to the control board, as shown below:

media/a8d408be3629a2d288dbb30bd60007af.png

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 30Ultrasonic Ranger\Project 30.1_Ultra-
sonic_Ranging”.

//**
/*
* Filename : Ultrasonic Ranging
* Description : Use the ultrasonic module to measure the distance.
* Auther : http//www.keyestudio.com
*/
const int TrigPin = 13; // define TrigPin
const int EchoPin = 14; // define EchoPin.
int duration = 0; // Define the initial value of the duration to be 0
int distance = 0;//Define the initial value of the distance to be 0
void setup()
{
pinMode(TrigPin , OUTPUT); // set trigPin to output mode
pinMode(EchoPin , INPUT); // set echoPin to input mode

(continues on next page)

756 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

Serial.begin(115200); // Open serial monitor at 115200 baud to see ping results.
}
void loop()
{
// make trigPin output high level lasting for 10s to triger HC_SR04
digitalWrite(TrigPin , HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin , LOW);
// Wait HC-SR04 returning to the high level and measure out this waitting time
duration = pulseIn(EchoPin , HIGH);
// calculate the distance according to the time
distance = (duration/2) / 28.5 ;
Serial.print("Distance: ");
Serial.print(distance); //Serial port print distance value
Serial.println("cm");
delay(300); // Wait 100ms between pings (about 20 pings/sec).

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You need to press the reset button on the ESP32 mainboard first, and
then you will see that the serial port monitor window will print out the distance between the ultrasonic sensor and the
object.

9.31. Project 30Ultrasonic Ranger 757

keyestudio WiKi

9.31.5 Wiring diagram of the ultrasonic rangefinder

Next, we will use ESP32 to control an ultrasonic sensor and 4 LEDs to simulate ultrasonic rangefinder. Connect the
line as shown below

media/910ed1be8be94411a090afb95af86d1a.png

9.31.6 Project code

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 30Ultrasonic
Ranger\Project_30.2_Ultrasonic_Ranger”.

//**
/*
* Filename : Ultrasonic Ranger
* Description : four leds are controlled by ultrasonic ranging.
* Auther : http//www.keyestudio.com
*/
const int TrigPin = 13; // define TrigPin
const int EchoPin = 14; // define EchoPin.
const int PIN_LED1 = 4; // define PIN_LED1
const int PIN_LED2 = 0; // define PIN_LED2
const int PIN_LED3 = 2; // define PIN_LED3
const int PIN_LED4 = 15; // define PIN_LED4
int duration = 0; // define the initial value of the duration to be 0
int distance = 0; // define the initial value of the distance to be 0
void setup()
{
pinMode(TrigPin , OUTPUT); // set trigPin to output mode
pinMode(EchoPin , INPUT); // set echoPin to input mode
pinMode(PIN_LED1 , OUTPUT); // set PIN_LED1 to output mode
pinMode(PIN_LED2 , OUTPUT); // set PIN_LED2 to output mode
pinMode(PIN_LED3 , OUTPUT); // set PIN_LED3 to output mode
pinMode(PIN_LED4 , OUTPUT); // set PIN_LED4 to output mode
Serial.begin(115200); // Open serial monitor at 115200 baud to see ping results.

}
void loop()
{
// make trigPin output high level lasting for 10s to triger HC_SR04
digitalWrite(TrigPin , HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin , LOW);

// Wait HC-SR04 returning to the high level and measure out this waitting time
duration = pulseIn(EchoPin , HIGH);

// calculate the distance according to the time
(continues on next page)

758 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

distance = (duration/2) / 28.5 ;
Serial.print("Distance: ");
Serial.print(distance); //Serial port print distance value
Serial.println("cm");
if (distance <= 5)
{
digitalWrite(PIN_LED1, HIGH);

}
else
{
digitalWrite(PIN_LED1, LOW);

}
if (distance <= 10)
{
digitalWrite(PIN_LED2, HIGH);

}
else
{
digitalWrite(PIN_LED2, LOW);

}
if (distance <= 15)
{
digitalWrite(PIN_LED3, HIGH);

}
else
{
digitalWrite(PIN_LED3, LOW);

}
if (distance <= 20)
{
digitalWrite(PIN_LED4, HIGH);

}
else
{
digitalWrite(PIN_LED4, LOW);

}
}
//**

9.31.7 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open
the serial monitor and set the baud rate to 115200. You will see that the serial port monitor window will print outthe
distance between the ultrasonic sensor and the object, and the corresponding LED will light up when we move our
hand in front of the ultrasonic sensor.

9.31. Project 30Ultrasonic Ranger 759

keyestudio WiKi

9.32 Project 31Temperature Instrument

9.32.1 Introduction

Thermistor is a kind of resistor whose resistance depends on temperature changes, which is widely used in gardening,
home alarm system and other devices. Therefore, we can use the feature to make a temperature instrument.

9.32.2 Components

ESP32*1 Breadboard*1 Thermistor*1 10KResistor*1

M-F Dupont Wires LCD 128X32 DOT*1 Jumper Wires USB Cable*1

9.32.3 Component knowledge

Thermistor: A Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance
of the Thermistor will change. We can take advantage of this characteristic by using a thermistor to detect temperature
intensity. A Thermistor and its electronic symbol are shown below:

media/809b8634747fb295021f12e3b92b7894.png

The relationship between resistance value and temperature of a thermistor is

Where:

Rt is the thermistor resistance under T2 temperature;

760 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

R is the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of e;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.

For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.

The circuit connection method of the Thermistor is similar to photoresistor, as the following

media/b0f80e9bd350a8b7390a73756ac1ac8c.jpeg

We can use the value measured by the ADC converter to obtain the resistance value of Thermistor, and then we can use
the formula to obtain the temperature value.

Therefore, the temperature formula can be derived as:

9.32.4 Read the value of the Thermistor

First we will learn the thermistor to read the current ADC valuevoltage value and temperature value and print them out.
Please connect the wires according to the wiring diagram below

media/806fd81bf8a761b4ae1a638489c426ce.png

You can open the code we provide: If you haven’t downloaded the code file, please click on the link to download
itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 31Temperature Instru-
ment\Project_31.1_Read_the_thermistor_analog_value”.

//**
/*
* Filename : Thermomter

(continues on next page)

9.32. Project 31Temperature Instrument 761

keyestudio WiKi

(continued from previous page)

* Description : Making a thermometer by thermistor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36
void setup() {
Serial.begin(115200);

}

void loop() {
int adcValue = analogRead(PIN_ANALOG_IN); //read ADC pin
double voltage = (float)adcValue / 4095.0 * 3.3; // calculate voltage
double Rt = 10 * voltage / (3.3 - voltage); //calculate resistance␣

→˓value of thermistor
double tempK = 1 / (1 / (273.15 + 25) + log(Rt / 10) / 3950.0); //calculate␣

→˓temperature (Kelvin)
double tempC = tempK - 273.15; //calculate␣

→˓temperature (Celsius)
Serial.printf("ADC value : %d,\tVoltage : %.2fV, \tTemperature : %.2fC\n", adcValue,␣

→˓voltage, tempC);
delay(1000);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You need to press the reset button on the ESP32 mainboard first, and
then you will see that the serial port monitor window prints out the thermistor’s current ADC valuevoltage value and
temperature value. Try pinching the thermistor with your index finger and thumb (don’t touch wires) for a while, and
you will see the temperature increase.

762 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.32.5 Wiring diagram of the temperature instrument

media/5a437bfdcad012211e15cab54e35dad7.png

9.32.6 Adding the lcd128_32_io library

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

The lcd128_32_io library had been added previously, so you don’t need to add it again. If not, you need to add the
lcd128_32_io library. The steps to add third-party libraries are as follows:

9.32.7 Project code

After the lcd128_32_io library was added, You can open the code we provideIf you haven’t downloaded the code file,
please click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 31Temperature Instru-
ment\Project_31.2_Temperature_Instrument”.

//**
/*
* Filename : Temperature Instrument
* Description : LCD displays the temperature of thermistor.
* Auther : http//www.keyestudio.com
*/
#include "lcd128_32_io.h"

#define PIN_ANALOG_IN 36

lcd lcd(21, 22); //Create lCD128 *32 pinsda->21 scl->22

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //clear

}
char string[10];

void loop() {
int adcValue = analogRead(PIN_ANALOG_IN); //read ADC pin
double voltage = (float)adcValue / 4095.0 * 3.3; // calculate voltage
double Rt = 10 * voltage / (3.3 - voltage); //calculate resistance␣

→˓value of thermistor
double tempK = 1 / (1 / (273.15 + 25) + log(Rt / 10) / 3950.0); //calculate␣

→˓temperature (Kelvin)
double tempC = tempK - 273.15; //calculate␣

→˓temperature (Celsius)
lcd.Cursor(0,0); //Set display position

(continues on next page)

9.32. Project 31Temperature Instrument 763

keyestudio WiKi

(continued from previous page)

lcd.Display("Voltage:"); //Setting the display
lcd.Cursor(0,8);
lcd.DisplayNum(voltage);
lcd.Cursor(0,11);
lcd.Display("V");
lcd.Cursor(2,0);
lcd.Display("tempC:");
lcd.Cursor(2,8);
lcd.DisplayNum(tempC);
lcd.Cursor(2,11);
lcd.Display("C");
delay(200);

}
//**

9.32.8 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the LCD 128X32 DOT displays the voltage value of the thermistor and the temperature value in the current
environment.

9.33 Project 32RFID

9.33.1 Introduction

Nowadays, many residential districts use this function to open the door by swiping the card, which is very convenient.
In this Project, we will learn how to use RFID(radio frequency identification) wireless communication technology and
read and write the key chain card (white card) and control the steering gear rotation by RFID-MFRC522 module.

764 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.33.2 Components

ESP32*1 Breadboard*1 RFID-RC522 Module*1

M-F Dupont Wires Servo*1 White Card*1

Key Chain*1 Jumper wires USB Cable*1

9.33.3 Component knowledge

RFIDRFID (Radio Frequency Identification) is a wireless communication technology. A complete RFID system
is generally composed of the responder and reader. Generally, we use tags as responders, and each tag has a unique
code, which is attached to the object to identify the target object. The reader is a device for reading (or writing) tag
information.

Products derived from RFID technology can be divided into three categories: passive RFID productsactive RFID
products and semi active RFID products. And Passive RFID products are the earliest, the most mature and most widely
used products in the market among others. It can be seen everywhere in our daily life such as, the bus card, dining
card, bank card, hotel access cards, etc., and all of these belong to close-range contact recognition. The main operating
frequency of Passive RFID products are: 125KHZ (low frequency), 13.56MHZ (high frequency), 433MHZ (ultrahigh
frequency) and 915MHZ (ultrahigh frequency). Active and semi active RFID products work at higher frequencies.

The RFID module we use is a passive RFID product with the operating frequency of 13.56MHz.

RFID-RC522 ModuleThe MFRC522 is a highly integrated reader/writer IC for contactless communication at
13.56MHz. The MFRC522’s internal transmitter is able to drive a reader/writer antenna designed to communicate
with ISO/IEC 14443 A/MIFARE cards and transponders without additional active circuitry. The receiver module
provides a robust and efficient implementation for demodulating and decoding signals from ISO/IEC 14443 A/MIFARE
compatible cards and transponders. The digital module manages the complete ISO/IEC 14443A framing and error
detection (parity and CRC) functionality.

This RFID Module uses MFRC522 as the control chip and adopts I2C (Inter-Integrated Circuit) interface.

9.33. Project 32RFID 765

keyestudio WiKi

media/5a19d0dd224c2cdc78871f11e8951045.png

Specifications:

• Operating voltage: DC 3.3V-5V

• Operating current: 13—100mA/DC 5V

• Idling current: 10-13mA/DC 5V

• Sleep current: <80uA

• Peak current: <100mA

• Operating frequency: 13.56MHz

• Maximum power: 0.5W

• Supported card types: mifare1 S50mifare1 S70, mifare UltraLight, mifare Pro, mifare Desfire.

• Environmental operating temperature: -20 to 80 degrees Celsius.

• Environment storage temperature: -40 to 85 degrees Celsius.

• Relative Humidity: 5% to 95%.

• Data transfer rate: The maximum is 10Mbit/s.

9.33.4 RFID Read UID

We will read the UNIQUE ID number (UID) of the RFID card and identify the type of the RFID card, and display the
relevant information through the serial port. The wiring diagram is shown below

media/1cdb3ffd7f392f29451aeed5c3257133.png

Adding the MFRC522_I2C and Wire libraries

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

If you haven’t installed the MFRC522_I2C and Wire libraries yet, please do so before learning. The steps to add
third-party libraries are as follows:

After the MFRC522_I2C and Wire libraries were added, You can open the code we provideIf you haven’t downloaded
the code file, please click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 32RFID\Project_32.1_RFID_Read_UID”.

//**
/*
* Filename : RFID
* Description : RFID reader UID

(continues on next page)

766 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

* Auther : http//www.keyestudio.com
*/
#include <Wire.h>
#include "MFRC522_I2C.h"
// IIC pins default to GPIO21 and GPIO22 of ESP32
// 0x28 is the i2c address of SDA, if doesn't matchplease check your address with i2c.
MFRC522 mfrc522(0x28); // create MFRC522.

void setup() {
Serial.begin(115200); // initialize and PC's serial communication
Wire.begin(); // initialize I2C
mfrc522.PCD_Init(); // initialize MFRC522
ShowReaderDetails(); // dispaly PCD - MFRC522 read carder
Serial.println(F("Scan PICC to see UID, type, and data blocks..."));

}

void loop() {
//
if (! mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadCardSerial()) {
delay(50);
return;

}

// select one of door cards. UID and SAK are mfrc522.uid.

// save UID
Serial.print(F("Card UID:"));
for (byte i = 0; i < mfrc522.uid.size; i++) {
Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
Serial.print(mfrc522.uid.uidByte[i], HEX);

}
Serial.println();

}

void ShowReaderDetails() {
// attain the MFRC522 software
byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg);
Serial.print(F("MFRC522 Software Version: 0x"));
Serial.print(v, HEX);
if (v == 0x91)
Serial.print(F(" = v1.0"));

else if (v == 0x92)
Serial.print(F(" = v2.0"));

else
Serial.print(F(" (unknown)"));

Serial.println("");
// when returning to 0x00 or 0xFF, may fail to transmit communication signals
if ((v == 0x00) || (v == 0xFF)) {
Serial.println(F("WARNING: Communication failure, is the MFRC522 properly connected?

→˓"));
}

}

(continues on next page)

9.33. Project 32RFID 767

keyestudio WiKi

(continued from previous page)

//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, and open
the serial monitor and then set baud rate to 115200. You need to press the reset button on the ESP32 mainboard first,
and then you will see that place the door card and key chain close to the module sensor area respectively, the serial
monitor display the card number and key chain value respectively, as shown below:

Note: the door card value and key chain value may be different for different RRFID -RC522 door cards and key chains.

9.33.5 Wiring diagram of the RFID MFRC522

Now we use the RFID -RC522 modulewhite card/key chain and Servo to simulate an intelligent access control system.
When the white card/key chain close to the RFID -RC522 module induction area, the servo rotates. Wiring according
to the figure below

media/3ae6c0f1098d2aee34c51e7a96c25571.png

9.33.6 Adding the MFRC522_I2C, Wire and ESP32Servo libraries

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

The MFRC522_I2C, Wire and ESP32Servo libraries had been added previously, so you don’t need to add it again. If
not, you need to add the MFRC522_I2C, Wire and ESP32Servo libraries. The steps to add third-party Libraries are
as follows:

768 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.33.7 Project code

After the MFRC522_I2C, Wire and ESP32Servo libraries were added, You can open the code we provideIf you
haven’t downloaded the code file, please click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project
32RFID\Project_32.2_RFID_Control_Servo”.

Note: Different RFID-MFRC522 IC cards and keys have diverse values.You can substitute your own IC cards and keys
values for the corresponding values read by the RFID-MFRC522 module in the program, otherwise the servo can’t be
controlled when uploading the test code to the ESP32.

For example: You can replace the rfid_str of the

media/85170ea6c47d9350dd05efa60be8c808.png

in the program code with your own IC cards and
keys values read by the RFID-MFRC522 module.

//***
/*
* Filename : RFID mfrc522 Control Servo
* Description : RFID controlled steering gear simulated door opening
* Auther : http//www.keyestudio.com
*/
#include <Wire.h>
#include "MFRC522_I2C.h"
// IIC pins default to GPIO21 and GPIO22 of ESP32
// 0x28 is the i2c address of SDA, if doesn't matchplease check your address with i2c.
MFRC522 mfrc522(0x28); // create MFRC522.

#include <ESP32Servo.h>
Servo myservo; // create servo object to control a servo
int servoPin = 15; // Servo motor pin

String rfid_str = "";

void setup() {
Serial.begin(115200);
Wire.begin();
mfrc522.PCD_Init();
ShowReaderDetails(); // dispaly PCD - MFRC522 read carder
Serial.println(F("Scan PICC to see UID, type, and data blocks..."));

myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

→˓object
myservo.write(0);
delay(500);

}

void loop() {
if (! mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadCardSerial()) {
delay(50);

(continues on next page)

9.33. Project 32RFID 769

keyestudio WiKi

(continued from previous page)

return;
}

// select one of door cards. UID and SAK are mfrc522.uid.

// save UID
rfid_str = ""; //String emptying
Serial.print(F("Card UID:"));
for (byte i = 0; i < mfrc522.uid.size; i++) {
rfid_str = rfid_str + String(mfrc522.uid.uidByte[i], HEX); //Convert to string
//Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
//Serial.print(mfrc522.uid.uidByte[i], HEX);

}
Serial.println(rfid_str);

if (rfid_str == "93adf720" || rfid_str == "39b646c2") {
myservo.write(180);
delay(500);
Serial.println(" open the door!");
}

}

void ShowReaderDetails() {
// attain the MFRC522 software
byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg);
Serial.print(F("MFRC522 Software Version: 0x"));
Serial.print(v, HEX);
if (v == 0x91)
Serial.print(F(" = v1.0"));

else if (v == 0x92)
Serial.print(F(" = v2.0"));

else
Serial.print(F(" (unknown)"));

Serial.println("");
// when returning to 0x00 or 0xFF, may fail to transmit communication signals
if ((v == 0x00) || (v == 0xFF)) {
Serial.println(F("WARNING: Communication failure, is the MFRC522 properly connected?

→˓"));
}

}
//***

770 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.33.8 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, and open
the serial monitor and then set baud rate to 115200. You need to press the reset button on the ESP32 mainboard first,
and then you will see that when using the white card or a key card swiping, the serial port monitor displays white card
or key card information and “open the door”. As shown in the picture below, and the servo rotates to the corresponding
angle to simulate opening the door.

9.34 Project 33Keypad Door

9.34.1 Introduction

Commonly used digital button sensor, one button uses an IO port. However, it will occupy too many IO ports when we
need a lot of buttons. In order to save the use of IO ports, the multiple buttons are made into a matrix type, through the
control of the line and row to achieve less IO port control of multiple buttons. In this project, we will learn ESP32 and
thin film 4*4 matrix keyboard control a servo and a buzzer.

9.34.2 Components

ESP32*1 Breadboard*1 Servo*1 Active Buzzer*1

44 Membrane Matrix Keyboard1 Jumper Wires USB Cable*1 1kResistor*1

NPN transistor(S8050)*1

9.34. Project 33Keypad Door 771

keyestudio WiKi

9.34.3 Component knowledge

4*4 Matrix keyboardA Keypad Matrix is a device that integrates a number of keys in one package. As is shown
below, a 4x4 Keypad Matrix integrates 16 keys:

Similar to the integration of an LED Matrix, the 4x4 Keypad Matrix has each row of keys connected with one pin and
this is the same for the columns. Such efficient connections reduce the number of processor ports required. The internal
circuit of the Keypad Matrix is shown below.

media/5ebdacba906622079e0ef41dc1ea3fdf.png

The method of usage is similar to the Matrix LED, by using a row or column scanning method to detect the state of
each key’s position by column and row. Take column scanning method as an example, send low level to the first 4
column (Pin4), detect level state of row 1234 to judge whether the key A, B, C, D are pressed. Then send low level to
column321 in turn to detect whether other keys are pressed. By this means, you can get the state of all of the keys.

9.34.4 Read the key value of the 4*4 matrix keyboard

We start with a simple code to read the values of the 4*4 matrix keyboard and print them in the serial monitor. Its
wiring diagram is shown below

media/8bfa0e1b1a0f53598f51341d51bc7601.png

How to add the Keypad library

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

This code uses a library named “Keypad”, if you haven’t installed it yet, please do so before learning. The steps to add
third-party libraries are as follows:

After the Keypad library is added, You can open the code we provideIf you haven’t downloaded the code file, please
click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 33:Key-
pad\DoorProject_33.1_4x4_Matrix_Keypad_Display”.

//**
/*
* Filename : 4x4 Matrix Keypad Display
* Description : Get the value for the matrix keyboard
* Auther : http//www.keyestudio.com

(continues on next page)

772 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

*/
#include <Keypad.h>

// define the symbols on the buttons of the keypad
char keys[4][4] = {
{'1', '2', '3', 'A'},
{'4', '5', '6', 'B'},
{'7', '8', '9', 'C'},
{'*', '0', '#', 'D'}

};

byte rowPins[4] = {22, 21, 19, 18}; // connect to the row pinouts of the keypad
byte colPins[4] = {17, 16, 4, 0}; // connect to the column pinouts of the keypad

// initialize an instance of class NewKeypad
Keypad myKeypad = Keypad(makeKeymap(keys), rowPins, colPins, 4, 4);

void setup() {
Serial.begin(115200); // Initialize the serial port and set the baud rate to 115200
Serial.println("ESP32 is ready!"); // Print the string "UNO is ready!"

}

void loop() {
// Get the character input
char keyPressed = myKeypad.getKey();
// If there is a character input, sent it to the serial port
if (keyPressed) {
Serial.println(keyPressed);

}
}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, and open
the serial monitor and then set baud rate to 115200. You need to press the reset button on the ESP32 mainboard first,
and then you will see that press the keyboard and the serial port monitor prints the corresponding key value, as shown
below.

9.34. Project 33Keypad Door 773

keyestudio WiKi

9.34.5 Wiring diagram of the Keypad Door

In the last experiment, we have known the key values of the 4*4 matrix keyboard. Next, we use it as the keyboard to
control a servo and a buzzer.

media/862e840117a46c1174522a734e28e2f0.png

6. Adding the Keypad and ESP32Servo libraries

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

The Keypad and ESP32Servo libraries had been added previously, so you don’t need to add them again. If not, you
need to add Keypad and ESP32Servo libraries. The steps to add third-party Libraries are as follows:

9.34.6 Project code

After the Keypad and ESP32Servo libraries were added, You can open the code we provideIf you haven’t downloaded
the code file, please click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 33Keypad
Door\Project_33.2_Keypad_Door”.

//**
/*
* Filename : Keypad_Door
* Description : Make a simple combination lock.
* Auther : http//www.keyestudio.com
*/

(continues on next page)

774 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

#include <Keypad.h>
#include <ESP32Servo.h>

// define the symbols on the buttons of the keypad
char keys[4][4] = {
{'1', '2', '3', 'A'},
{'4', '5', '6', 'B'},
{'7', '8', '9', 'C'},
{'*', '0', '#', 'D'}

};

byte rowPins[4] = {22, 21, 19, 18}; // connect to the row pinouts of the keypad
byte colPins[4] = {17, 16, 4, 0}; // connect to the column pinouts of the keypad

// initialize an instance of class NewKeypad
Keypad myKeypad = Keypad(makeKeymap(keys), rowPins, colPins, 4, 4);

Servo myservo; // Create servo object to control a servo
int servoPin = 15; // Define the servo pin
int buzzerPin = 2; // Define the buzzer pin

char passWord[] = {"1234"}; // Save the correct password

void setup() {
myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(servoPin, 500, 2500); // attaches the servo on servoPin to the servo␣

→˓object
// set the high level time range of the servo␣

→˓motor for an accurate 0 to 180 sweep
myservo.write(0); // Set the starting position of the servo motor
pinMode(buzzerPin, OUTPUT);
Serial.begin(115200);

}

void loop() {
static char keyIn[4]; // Save the input character
static byte keyInNum = 0; // Save the the number of input characters
char keyPressed = myKeypad.getKey(); // Get the character input
// Handle the input characters
if (keyPressed) {
// Make a prompt tone each time press the key
digitalWrite(buzzerPin, HIGH);
delay(100);
digitalWrite(buzzerPin, LOW);
// Save the input characters
keyIn[keyInNum++] = keyPressed;
// Judge the correctness after input
if (keyInNum == 4) {
bool isRight = true; // Save password is correct or not
for (int i = 0; i < 4; i++) { // Judge each character of the password is correct␣

→˓or not
if (keyIn[i] != passWord[i])

(continues on next page)

9.34. Project 33Keypad Door 775

keyestudio WiKi

(continued from previous page)

isRight = false; // Mark wrong passageword if there is any wrong␣
→˓character.

}
if (isRight) { // If the input password is right

myservo.write(90); // Open the switch
delay(2000); // Delay a period of time
myservo.write(0); // Close the switch
Serial.println("passWord right!");

}
else { // If the input password is wrong

digitalWrite(buzzerPin, HIGH);// Make a wrong password prompt tone
delay(1000);
digitalWrite(buzzerPin, LOW);
Serial.println("passWord error!");

}
keyInNum = 0; // Reset the number of the input characters to 0

}
}

}
//**

9.34.7 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that press the keypad to input password with 4 characters. If the input is correct(Correct password :1234), the
servo will move to a certain degree, and then return to the original position. If the input is wrong, an input error alarm
will be generated.

9.35 Project 34IR Control Sound and LED

9.35.1 Introduction

An infrared(IR) remote control is a low-cost and easy-to-use wireless communication technology. IR light is very
similar to visible light, except that its wavelength is slightly longer. This means that infrared rays cannot be detected by
the human eye, which is perfect for wireless communication. For example, when you press a button on the TV remote
control, an infrared LED will switch on and off repeatedly at a frequency of 38,000 times per second, transmitting
information (such as volume or channel control) to the infrared sensor on the TV.

We’ll start by explaining how common infrared communication protocols work. Then we will start the project with a
remote control and an infrared receiver component.

776 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.35.2 Components

ESP32*1 Breadboard*1 IR Receiver *1 RGB LED*1

IR Remote Controller*1 Active buzzer*1 10KResistor*1 220Resistor*3

NPN transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

9.35.3 Component knowledge

Infrared RemoteAn infrared(IR) remote control is a device with a certain number of buttons. Pressing down dif-
ferent buttons will make the infrared emission tube, which is located in the front of the remote control, send infrared ray
with different command. Infrared remote control technology is widely used in electronic products such as TVaircondi-
tioning, etc. Thus making it possible for you to switch TV programs and adjust the temperature of the air conditioning
when away from them. The remote control we use is shown below:

The infrared remote controller adopts NEC code and the signal cycle is 110ms.

media/3c9d76cb0d24d9861811ce2cb0bb6ae4.png

Infrared receiverreceiver is a component which can receive the infrared light, so we can use it to detect the signal
emitted by the infrared remote control.

The infrared receiver demodules the received infrared signal and converts it back to binary, then passes the information
to the microcontroller.

Infrared signal modulation process diagram

9.35. Project 34IR Control Sound and LED 777

keyestudio WiKi

media/3da1969e509f53706643c77d0534eb73.png

NEC Infrared communication protocol

NEC Protocol:

To my knowledge the protocol I describe here was developed by NEC (Now Renesas). I’ve seen very similar protocol
descriptions on the internet, and there the protocol is called Japanese Format. I do admit that I don’t know exactly
who developed it. What I do know is that it was used in my late VCR produced by Sanyo and was marketed under the
name of Fisher. NEC manufactured the remote control IC. This description was taken from my VCR’s service manual.
Those were the days, when service manuals were filled with useful information!

Features:

• * 8 bit address and 8 bit command length.

• * Extended mode available, doubling the address size.

• * Address and command are transmitted twice for reliability.

• * Pulse distance modulation.

• * Carrier frequency of 38kHz.

• * Bit time of 1.125ms or 2.25ms.

Modulation:

media/da33571c6f0afb94b1ec1d91caba3edb.png

The NEC protocol uses pulse distance encoding of the bits. Each pulse is a 560µs long 38kHz carrier burst (about
21 cycles). A logical “1” takes 2.25ms to transmit, while a logical “0” is only half of that, being 1.125ms. The
recommended carrier duty-cycle is 1/4 or 1/3.

Protocol:

media/f970404e7bbfb5711fea5c776f689f3a.png

The picture above shows a typical pulse train of the NEC protocol. With this protocol the LSB is transmitted first. In
this case Address 59𝑎𝑛𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑16 is transmitted. A message is started by a 9ms AGC burst, which was used to set
the gain of the earlier IR receivers. This AGC burst is then followed by a 4.5ms space, which is then followed by the
Address and Command.

Address and Command are transmitted twice. The second time all bits are inverted and can be used for verification of
the received message. The total transmission time is constant because every bit is repeated with its inverted length. If
you’re not interested in this reliability you can ignore the inverted values, or you can expand the Address and Command
to 16 bits each!

778 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

Keep in mind that one extra 560µs burst has to follow at the end of the message in order to be able to determine the
value of the last bit.

media/63364daf21e5522c64eb8dfa82f2cef2.png

A command is transmitted only once, even when the key on the remote control remains pressed. Every 110ms a repeat
code is transmitted for as long as the key remains down. This repeat code is simply a 9ms AGC pulse followed by a
2.25ms space and a 560µs burst.

media/afea92a3b5cc1aa2457d2b118b157c84.png

Extended NEC protocol:

The NEC protocol is so widely used that soon all possible addresses were used up. By sacrificing the address redun-
dancy the address range was extended from 256 possible values to approximately 65000 different values. This way the
address range was extended from 8 bits to 16 bits without changing any other property of the protocol. By extending
the address range this way the total message time is no longer constant. It now depends on the total number of 1’s and
0’s in the message. If you want to keep the total message time constant you’ll have to make sure the number 1’s in the
address field is 8 (it automatically means that the number of 0’s is also 8). This will reduce the maximum number of
different addresses to just about 13000.

The command redundancy is still preserved. Therefore each address can still handle 256 different commands.

media/2f78d1ce7f001926f6b90ad966796e91.png

Keep in mind that 256 address values of the extended protocol are invalid because they are in fact normal NEC protocol
addresses. Whenever the low byte is the exact inverse of the high byte it is not a valid extended address.

9.35.4 Decoded infrared signal

We connect the infrared receiving element to the ESP32, according to the wiring diagram below:

media/700496cb1e0d5d23fd63c28469dd3fd0.png

How to add the IRremoteESP8266 library

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

9.35. Project 34IR Control Sound and LED 779

keyestudio WiKi

This code uses a library named “IRremoteESP8266”, if you haven’t installed it yet, please do so before learning. The
steps to add third-party libraries are as follows:

After the IRremoteESP8266 library is added, You can open the code we provideIf you haven’t downloaded the code
file, please click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 34IR Control Sound And
LED\Project_34.1_Decoded_IR_Signal”.

//**
/*
* Filename : Decoded IR Signal
* Description : Decode the infrared remote control and print it out through the serial␣
→˓port.
* Auther : http//www.keyestudio.com
*/
#include <Arduino.h>
#include <IRremoteESP8266.h>
#include <IRrecv.h>
#include <IRutils.h>

const uint16_t recvPin = 0; // Infrared receiving pin
IRrecv irrecv(recvPin); // Create a class object used to receive class
decode_results results; // Create a decoding results class object

void setup() {
Serial.begin(115200); // Initialize the serial port and set the baud rate to␣

→˓115200
irrecv.enableIRIn(); // Start the receiver
Serial.print("IRrecvDemo is now running and waiting for IR message on Pin ");
Serial.println(recvPin); //print the infrared receiving pin

}

void loop() {
if (irrecv.decode(&results)) { // Waiting for decoding
serialPrintUint64(results.value, HEX);// Print out the decoded results
Serial.println("");
irrecv.resume(); // Release the IRremote. Receive the next value

}
delay(1000);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, and open
the serial monitor and then set baud rate to 115200. You need to press the reset button on the ESP32 mainboard first,
and then you will see that aim the infrared remote control transmitter at the infrared receiving head, press the button
on the infrared controller, and the serial port monitor prints the current received key code values.

780 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

Write down the code associated with each button, because you will need that information later.

media/ebcf0cb2055f7784505f76ceeaef9f47.jpeg

9.35.5 Wiring diagram of the infrared remote control

media/4912c1622e0eaedb76ea3a9b8ed969c0.png

9.35.6 Project code

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

The IRremoteESP8266 library had been added previously, so you don’t need to add it again. If not, you need to add
the IRremoteESP8266 library. The steps to add third-party libraries are as shown above.

After the IRremoteESP8266 library was added, You can open the code we provideIf you haven’t downloaded the code
file, please click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder “Arduino-Codes\Project 34IR Control Sound And
LED\Project_34.2_IR_Control_Sound_And_LED”.

//**
/*
* Filename : IR Control Sound And LED
* Description : Remote control RGB and Passive buzzer with infrared remote control.

(continues on next page)

9.35. Project 34IR Control Sound and LED 781

keyestudio WiKi

(continued from previous page)

* Auther : http//www.keyestudio.com
*/
#include <Arduino.h>
#include <IRremoteESP8266.h>
#include <IRrecv.h>
#include <IRutils.h>

const uint16_t recvPin = 0; // Infrared receiving pin
IRrecv irrecv(recvPin); // Create a class object used to receive class
decode_results results; // Create a decoding results class object

int ledPins[] = {22, 21, 4}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels
int buzzerPin = 15; // the number of the buzzer pin

void setup() {
irrecv.enableIRIn(); // Start the receiver
pinMode(buzzerPin, OUTPUT);
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

void loop() {
if(irrecv.decode(&results)) { // Waiting for decoding
handleControl(results.value); // Handle the commands from remote control
irrecv.resume(); // Receive the next value

}
}

void handleControl(unsigned long value) {
// Make a sound when it rereives commands
digitalWrite(buzzerPin, HIGH);
delay(100);
digitalWrite(buzzerPin, LOW);
// Handle the commands
if (value == 0xFF6897) // Receive the number '1'
{

ledcWrite(chns[0], 255); //Common cathode LED, high level to turn on the led.
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 0);
delay(1000);

}
else if (value == 0xFF9867) // Receive the number '2'
{

ledcWrite(chns[0], 0);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 0);
delay(1000);

}
else if (value == 0xFFB04F) // Receive the number '3'

(continues on next page)

782 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

{
ledcWrite(chns[0], 0);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 255);
delay(1000);

}
else if (value == 0xFF30CF) // Receive the number '4'
{

ledcWrite(chns[0], 255);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 0);
delay(1000);

}
else if (value == 0xFF18E7) // Receive the number '5'
{

ledcWrite(chns[0], 255);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 255);
delay(1000);

}
else if (value == 0xFF7A85) // Receive the number '6'
{

ledcWrite(chns[0], 0);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 255);
delay(1000);

}
else if (value == 0xFF10EF) // Receive the number '7'
{

ledcWrite(chns[0], 255);
ledcWrite(chns[1], 255);
ledcWrite(chns[2], 255);
delay(1000);

}
else{

ledcWrite(chns[0], 0);
ledcWrite(chns[1], 0);
ledcWrite(chns[2], 0);
delay(1000);
}

}
//**

9.35. Project 34IR Control Sound and LED 783

keyestudio WiKi

9.35.7 Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that press the 1 to 7 key of the infrared remote controller, the buzzer will sound once, and the RGB light will
be redgreenblueyellowredbluegreen and white respectively. Press another key (except 1 to 7 key), and the RGB light
will go off.

(Note: Before use, we need to remove the plastic sheet from the bottom of the infrared remote controller.)

media/3c9d76cb0d24d9861811ce2cb0bb6ae4.png

9.36 Project 35Bluetooth

This chapter mainly introduces how to make simple data transmission through bluetooth of ESP32 and mobile phones.
Project 35.1 is Classic Bluetooth and Project 35.2 is Bluetooth Control LED.

9.37 Project 35.1Classic Bluetooth

9.37.1 Components

USB Cable*1 ESP32*1

In this tutorial we need to use a Bluetooth APP called Serial Bluetooth Terminal to assist in the experiment. If you’ve
not installed it yet, please do so by clicking: https://www.appsapk.com/serial-bluetooth-terminal/ .The following is its
logo.

media/7b98d6708888b0a6f38f85ffca484857.png

784 Chapter 9. RaspberryPi Arduino

https://www.appsapk.com/serial-bluetooth-terminal/

keyestudio WiKi

9.37.2 Component knowledge

ESP32’s integrated Bluetooth function Bluetooth is a short-distance communication system, which can be divided
into two types, namely Bluetooth Low Energy(BLE) and Classic Bluetooth. There are two modes for simple data
transmission: master mode and slave mode.

Master mode

In this mode, works are done in the master device and it can connect with a slave device. And we can search and
select slave devices nearby to connect with. When a device initiates connection request in master mode, it requires
information of the other Bluetooth devices including their address and pairing passkey. After finishing pairing, it can
connect with them directly.

Slave mode

The Bluetooth module in slave mode can only accept connection request from a host computer, but cannot initiate a
connection request. After connecting with a host device, it can send data to or receive from the host device.

Bluetooth devices can make data interaction with each other, as one is in master mode and the other in slave mode.
When they are making data interaction, the Bluetooth device in master mode searches and selects devices nearby to
connect to. When establishing connection, they can exchange data. When mobile phones

exchange data with ESP32, they are usually in master mode and ESP32 in slave mode.

Master Slave

9.37. Project 35.1Classic Bluetooth 785

keyestudio WiKi

9.37.3 Wiring Diagram

We can use a USB cable to connect ESP32 mainboard to the USB port on the Raspberry Pi.

9.37.4 Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download itDown-
load Arduino C Codes file

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 35:lue-
tooth\Project_35.1_Classic_Bluetooth”.

786 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

//**
/*
* Filename : Classic Bluetooth--SerialToSerialBT
* Description : ESP32 communicates with the phone by bluetooth and print phone's data␣
→˓via a serial port
* Auther : http//www.keyestudio.com
*/
#include "BluetoothSerial.h"

BluetoothSerial SerialBT;
String buffer;
void setup() {
Serial.begin(115200);
SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.println("\nThe device started, now you can pair it with bluetooth!");

}

void loop() {
if (Serial.available()) {
SerialBT.write(Serial.read());

}
if (SerialBT.available()) {
Serial.write(SerialBT.read());

}
delay(20);

}
//**

9.37.5 Project result

Compile and upload the code to the ESP32. After uploading successfullywe will use a USB cable to power on. Open
the serial monitor and set the baud rate to 115200. You need to press the reset button on the ESP32 mainboard first,
and when you see the serial monitor prints out the character string as below, it indicates that the Bluetooth of ESP32
is ready and waiting to connect with the mobile phone. (If open the serial monitor and set the baud rate to 115200, the
information is not displayed, please press the RESET button of the ESP32)

media/1fd21fafd84d2b529931a89d21a03d6a.png

9.37. Project 35.1Classic Bluetooth 787

keyestudio WiKi

Make sure that the Bluetooth of your phone has been turned on and “Serial Bluetooth Terminal”has been installed.

media/382529edef3989e60264cad217d88e6f.png

Click “Search” to search Bluetooth devices nearby and select “ESP32 test” to connect to.

media/0608c9a78b5f56d4c8f1994c55c9cd46.png

Turn on software APP, click the left of the terminal. Select “Devices” .

media/32b8c3abd51fc538ba854b1d72e1165e.png

Select ESP32test in classic Bluetooth mode, and a successful connecting prompt will appear as shown on the right
illustration.

media/00f9b335cb512704763e3621e7c598b2.png

And now data can be transferred between your mobile phone and Raspberry Pi via ESP32.

Send “Hello!” from your phone, when the computer receives it, reply “Hi!” to your phone.

788 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

media/4f4e6b4e45996ccbde4da17219f02d00.png

9.38 Project 35.2Bluetooth Control LED

9.38.1 Components

ESP32*1 Breadboard*1

Red LED*1 220Resistor*1 Jumper
Wires

USB Cable*1

9.38. Project 35.2Bluetooth Control LED 789

keyestudio WiKi

9.38.2 Wiring diagram

media/0735997593c8858ad6441d8e9867206f.png

9.38.3 Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download itDown-
load Arduino C Codes file

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 35:Blue-
tooth\Project_35.2_Bluetooth_Control_LED”.

//**
/*
* Filename : Bluetooth Control LED
* Description : The phone controls esp32's led via bluetooth.

(continues on next page)

790 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

When the phone sends "LED_on," ESP32's LED lights turn on.
When the phone sends "LED_off," ESP32's LED lights turn off.

* Auther : http//www.keyestudio.com
*/
#include "BluetoothSerial.h"
#include "string.h"
#define LED 15
BluetoothSerial SerialBT;
char buffer[20];
static int count = 0;
void setup() {
pinMode(LED, OUTPUT);
SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.begin(115200);
Serial.println("\nThe device started, now you can pair it with bluetooth!");

}

void loop() {
while(SerialBT.available())
{
buffer[count] = SerialBT.read();
count++;

}
if(count>0){
Serial.print(buffer);
if(strncmp(buffer,"led_on",6)==0){
digitalWrite(LED,HIGH);

}
if(strncmp(buffer,"led_off",7)==0){
digitalWrite(LED,LOW);

}
count=0;
memset(buffer,0,20);

}
}
//**

9.38.4 Project result

Compile and upload the code to the ESP32, after uploading successfullywe will use a USB cable to power on. The
operation of the APP is the same as Project 35.1, you only need to change the sending content to “LED on” and “LED
off” to operate LEDs on the ESP32. Data sent from mobile APP:

media/21ec63e3abe43a119ab8a3d4634894f0.png

Display on the serial port of the computer:

9.38. Project 35.2Bluetooth Control LED 791

keyestudio WiKi

The phenomenon of LED

media/a1e66d46e5797995a1b66a761c7857f8.png

Attention: If the sending content isn’t “led-on” or“led-off”, then the state of LED will not change. If the LED is on,
when receiving irrelevant content, it keeps on; Correspondingly, if the LED is off, when receiving irrelevant content,
it keeps off.

9.39 Project 36WiFi Station Mode

9.39.1 Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn about ESP32’s WiFi Station mode.

9.39.2 Components

USB Cable*1 ESP32*1

792 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.39.3 Wiring

Connect the ESP32 to the USB port on your raspberry pi using a USB cable.

9.39.4 Component knowledge

Station mode: When ESP32 selects Station mode, it acts as a WiFi client. It can connect to the router network and
communicate with other devices on the router via WiFi connection. As shown below, the PC is connected to the router,
and if ESP32 wants to communicate with the PC, it needs to be connected to the router.

media/f74baff97695aa2ee33a8c19370d2547.png

9.39.5 Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download itDown-
load Arduino C Codes file

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 36WiFi Station
Mode\Project_36_WiFi_Station_Mode”.

9.39. Project 36WiFi Station Mode 793

keyestudio WiKi

Because the names and passwords of routers in various places are different, before the code runs, users need to enter
the correct router’s name and password in the box as shown in the illustration above.

794 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

//**
/*
* Filename : WiFi Station
* Description : Connect to your router using ESP32
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h> //Include the WiFi Library header file of ESP32.

//Enter correct router name and password.
const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password

void setup(){
Serial.begin(115200);
delay(2000);
Serial.println("Setup start");
WiFi.begin(ssid_Router, password_Router);//Set ESP32 in Station mode and connect it to␣

→˓your router.
Serial.println(String("Connecting to ")+ssid_Router);

//Check whether ESP32 has connected to router successfully every 0.5s.
while (WiFi.status() != WL_CONNECTED){
delay(500);

(continues on next page)

9.39. Project 36WiFi Station Mode 795

keyestudio WiKi

(continued from previous page)

Serial.print(".");
}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());//Serial monitor prints out the IP address assigned to␣

→˓ESP32.
Serial.println("Setup End");

}

void loop() {
}
//**

Project result

After making sure the router name and password are entered correctly, compile and upload the code to ESP32, open
serial monitor and set baud rate to 115200. You need to press the reset button on the ESP32 mainboard first, and when
ESP32 successfully connects to “ssid_Router”, serial monitor will print out the IP address assigned to ESP32 by the
router. (If open the serial monitor and set the baud rate to 115200, the information is not displayed, please press the
RESET button of the ESP32)

media/1fd21fafd84d2b529931a89d21a03d6a.png

796 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.40 Project 37WiFi AP Mode

9.40.1 Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn about ESP32’s WiFi AP mode.

9.40.2 Components

USB Cable*1 ESP32*1

9.40.3 Wiring

Connect the ESP32 to the USB port on your raspberry pi using a USB cable.

9.40.4 Component knowledge

AP mode : When ESP32 selects AP mode, it creates a hotspot network that is separated from the Internet and waits for
other WiFi devices to connect. As shown in the figure below, ESP32 is used as a hotspot. If a mobile phone or PC wants
to communicate with ESP32, it must be connected to the hotspot of ESP32. Only after a connection is established with
ESP32 can they communicate.

media/35d90f1ce10814ea1897ba63f8bd7ad9.png

9.40. Project 37WiFi AP Mode 797

keyestudio WiKi

9.40.5 Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download itDown-
load Arduino C Codes file

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 37WiFi AP
Mode\Project_37_WiFi_AP_Mode”.

Before the code runs, you can make any changes to the AP name and password for ESP32 in the box as shown in the
illustration above. Of course, you can leave it alone by default.

798 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

//**
/*
* Filename : WiFi AP
* Description : Set ESP32 to open an access point
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h> //Include the WiFi Library header file of ESP32.

const char *ssid_AP = "ESP32_WiFi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

IPAddress local_IP(192,168,1,108);//Set the IP address of ESP32 itself
IPAddress gateway(192,168,1,1); //Set the gateway of ESP32 itself
IPAddress subnet(255,255,255,0); //Set the subnet mask for ESP32 itself

void setup(){
Serial.begin(115200);
delay(2000);
Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);
Serial.println(WiFi.softAPConfig(local_IP, gateway, subnet) ? "Ready" : "Failed!");

(continues on next page)

9.40. Project 37WiFi AP Mode 799

keyestudio WiKi

(continued from previous page)

Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");
Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());
Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());

}else{
Serial.println("Failed!");

}
Serial.println("Setup End");

}

void loop() {
}
//**

9.40.6 Project result

Enter the ESP32 AP name and password correctly, compile and upload the code to ESP32, open the serial monitor and
set the baud rate to 115200. You need to press the reset button on the ESP32 mainboard first, and then it will display
as follows.

(If open the serial monitor and set the baud rate to 115200, the information is not displayed, please press the RESET
button of the ESP32)

media/1fd21fafd84d2b529931a89d21a03d6a.png

When observing the print information of the serial monitor, turn on the WiFi scanning function of your phone, and you
can see the ssid_AP on ESP32, which is called “ESP32_Wifi” in this Code. You can enter the password “12345678”
to connect it or change its AP name and password by modifying Code.

800 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

media/3e0ad895bea7f5100cc02a415adcace7.png

9.41 Project 38WiFi Station+AP Mode

9.41.1 Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn ESP32’s WiFi Station+AP mode.

9.41.2 Components

USB Cable*1 ESP32*1

9.41.3 Wiring

Connect the ESP32 to the USB port on your raspberry pi using a USB cable.

9.41. Project 38WiFi Station+AP Mode 801

keyestudio WiKi

9.41.4 Component knowledge

AP+Station mode: In addition to AP mode and Station mode, ESP32 can also use AP mode and Station mode at the
same time. This mode contains the functions of the previous two modes. Turn on ESP32’s Station mode, connect it to
the router network, and it can communicate with the Internet via the router. At the same time, turn on its AP mode to
create a hotspot network. Other WiFi devices can choose to connect to the router network or the hotspot network to
communicate with ESP32.

9.41.5 Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download itDown-
load Arduino C Codes file

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 38WiFi Station+AP
Mode\Project_38_WiFi_Station_AP_Mode”.

It is analogous to Project 36 and Project 37. Before running the code, you need to modify ssid_Router, password_Router,
ssid_AP and password_AP shown in the box of the illustration above.

802 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

//**
/*
* Filename : WiFi AP+Station
* Description : ESP32 connects to the user's router, turning on an access point
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h>

const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password
const char *ssid_AP = "ESP32_WiFi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

void setup(){
Serial.begin(115200);
Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);
Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");

(continues on next page)

9.41. Project 38WiFi Station+AP Mode 803

keyestudio WiKi

(continued from previous page)

Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());
Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());

}else{
Serial.println("Failed!");

}

Serial.println("\nSetting Station configuration ... ");
WiFi.begin(ssid_Router, password_Router);
Serial.println(String("Connecting to ")+ ssid_Router);
while (WiFi.status() != WL_CONNECTED){
delay(500);
Serial.print(".");

}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());
Serial.println("Setup End");

}

void loop() {
}
//**

9.41.6 Project result

After making sure that the code is modified correctly, compile and upload the code to ESP32, open the serial monitor
and set baud rate to 115200.

You need to press the reset button on the ESP32 mainboard first, and then it will display as follows: (If open the serial
monitor and set the baud rate to 115200, the information is not displayed, please press the RESET button of the ESP32)

media/1fd21fafd84d2b529931a89d21a03d6a.png

804 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

When observing the print information of the serial monitor, turn on the WiFi scanning function of your phone, and you
can see the ssid_AP on ESP32.

media/3e0ad895bea7f5100cc02a415adcace7.png

9.42 Project 39: WiFi Test

9.42.1 Introduction

In this experiment, we first use the WiFi station mode of ESP32 to read the IP address of WiFi, and then connect WiFi
through app to read the characters sent by each function button on App.

9.42.2 Components

USB Cable*1 ESP32*1 Smartphone/Tablet *1

9.42. Project 39: WiFi Test 805

keyestudio WiKi

9.42.3 Wiring

Connect the ESP32 to the USB port on your raspberry pi using a USB cable.

9.42.4 Install APP:

Android system (Smartphone/Tablet) APP:Go to Google Store to search for keys wifi

App link in Google Store:https://play.google.com/store/apps/details?id=com.keyestudio.esp8266_web_wifi2

Installation steps

Now transfer the keyes wifi.apk file in the folder to android phone or tablet, click keyes wifi.apk file to enter the
installation page, click“ALLOW”, then click“INSTALL”, after a while, click“OPEN”after the installation is completed
to enter the APP interface.

media/d620452a9d6188cb3946269510df5ae0.png

806 Chapter 9. RaspberryPi Arduino

https://play.google.com/store/apps/details?id=com.keyestudio.esp8266_web_wifi2

keyestudio WiKi

media/b311329042f5bbd2880841127b91ebf8.png

media/7c5cfc935371c8e2ab30e999775d5f8f.png

media/d48c065ebaf1c5ca652eb72b15d3e596.png

media/78c89b91c0af2268f6267813e7923a9b.png

IOS system (Smartphone/Tablet) APP:

a.Open App Store.

media/27924fdb3d67692df7c63d8d0fb72287.png

b. Enter keyes link in the search box and click Search. The download interface appears. Click“

media/962a57f92b78eea1f0e3e81463497a9c.png

”to
download and install the APP of keyes link. The following operations are similar to those of Android system, you can
refer to the steps of Android system above for operation.

9.42. Project 39: WiFi Test 807

keyestudio WiKi

9.42.5 Project code

You can open the code we provideIf you haven’t downloaded the code file, please click on the link to download itDown-
load Arduino C Codes file

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 39WiFi Test\Project_39_WiFi_Test”.

//**
/*
* Filename : WIFI Test
* Description : Wifi module test the ip of Wifi
* Auther : http//www.keyestudio.com
*/
// generated by KidsBlock
#include <Arduino.h>
#include <WiFi.h>
#include <ESPmDNS.h>
#include <WiFiClient.h>

String item = "0";
const char* ssid = "ChinaNet-2.4G-0DF0";
const char* password = "ChinaNet@233";
WiFiServer server(80);

void setup() {
Serial.begin(115200);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(500);
Serial.print(".");

}
Serial.println("");
Serial.print("Connected to ");
Serial.println(ssid);
Serial.print("IP address: ");
Serial.println(WiFi.localIP());
server.begin();
Serial.println("TCP server started");
MDNS.addService("http", "tcp", 80);

}

void loop() {
WiFiClient client = server.available();
if (!client) {

return;
}
while(client.connected() && !client.available()){

delay(1);
}
String req = client.readStringUntil('\r');
int addr_start = req.indexOf(' ');
int addr_end = req.indexOf(' ', addr_start + 1);
if (addr_start == -1 || addr_end == -1) {

Serial.print("Invalid request: ");
(continues on next page)

808 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

Serial.println(req);
return;

}
req = req.substring(addr_start + 1, addr_end);
item=req;
Serial.println(item);
String s;
if (req == "/")
{

IPAddress ip = WiFi.localIP();
String ipStr = String(ip[0]) + '.' + String(ip[1]) + '.' + String(ip[2]) + '.' +␣

→˓String(ip[3]);
s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n<!DOCTYPE HTML>\r\n<html>

→˓Hello from ESP32 at ";
s += ipStr;
s += "</html>\r\n\r\n";
Serial.println("Sending 200");
client.println(s);

}
//client.print(s);
client.stop();

}
//**

Special attention: you need to change the user’s Wifi name and Wifi password in the experiment

code

media/85551285d37d87fc8decadc09f968ec3.png

to your own Wifi name and Wifi password.

5. Project result

After making sure that the Code is modified correctly, compile and upload the code to ESP32.Note: If upload-

ing the code fails, you can press the Boot button on ESP32 after click

media/d09c4a31563f04a42d451e7bc1a5fb8a.png

, and release the Boot

button

media/dc77bfcf5851c8f43aab6cbe7cec7920.png

after the percentage of uploading progress appears)open the serial monitor and set baud rate
to 115200.

You need to press the reset button on the ESP32 mainboard first.In this way, the serial port monitor prints the de-
tected WiFi IP address, then open the WiFi APP and enter the detected WiFi IP address in the text box in front of the
WiFi button (for example, the IP address shown by the serial port monitor below :192.168.0.119), then click the WiFi
button.“403 Forbidden”or“Webpage not available”will change to“192.168.0.119”, indicating that the APP is already

9.42. Project 39: WiFi Test 809

keyestudio WiKi

connected to WiFi.

Click each function button on the APP by hand, and then the serial port monitor will print the corresponding characters
received. (If open the serial monitor and set the baud rate to 115200, the information is not displayed, please press the
RESET button of the ESP32)

media/1fd21fafd84d2b529931a89d21a03d6a.png

)

810 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.43 Project 40WiFi Smart Home

9.43.1 Introduction

In the previous experiment, we have learned the WiFi Station mode, WiFi AP mode and WiFi AP+Station mode of
the ESP32. In this project, we will use ESP32’s WiFi Station mode to control the work of multiple sensors/modules
through APP connection with WiFi to achieve the effect of WiFi smart home.

9.43.2 Components

ESP32*1 Breadboard*1 130 Motor*1 5V Relay Module*1 Servo*1

Temperature and Hu-
midity Sensor*1

HC-SR04 Ultra-
sonic Sensor*1

M-F Dupont
Wires

Smartphone/Tablet*1 Jumper
Wires

Battery Holder*1 Battery(self-
provided)*6

USB Cable*1 Keyestudio breadboard special
power module*1

Fan*1

9.43. Project 40WiFi Smart Home 811

keyestudio WiKi

9.43.3 Wiring diagram

Relay Module ESP32 Temperature and Humidity Sensor ESP32

G G G G

V 5V V 3V3

S IO32 S IO15

Ultrasonic Sensor ESP32 130 Motor ESP32

Vcc 5V G G

Trig IO14 V 5V

Echo IO27 IN+ IO19

Gnd G IN- IO18

Servo ESP32

Red line 5V

Brown line G

Orange line IO4

media/fd7a7efd4bc365e1524011b68217dee5.png

(Note: Connect the wires and then install a small fan blade on the DC motor.)

812 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

9.43.4 Install APP:

Android system (Smartphone/Tablet) APP:Go to Google Store to search for keys wifi

Installation steps

media/d620452a9d6188cb3946269510df5ae0.png

media/b311329042f5bbd2880841127b91ebf8.png

media/7c5cfc935371c8e2ab30e999775d5f8f.png

media/d48c065ebaf1c5ca652eb72b15d3e596.png

9.43. Project 40WiFi Smart Home 813

keyestudio WiKi

media/78c89b91c0af2268f6267813e7923a9b.png

IOS system (Smartphone/Tablet) APP:

a.Open App Store.

media/27924fdb3d67692df7c63d8d0fb72287.png

b. Enter keyes link in the search box and click Search. The download interface appears. Click“

media/962a57f92b78eea1f0e3e81463497a9c.png

”to
download and install the APP of keyes link. The following operations are similar to those of Android system, you can
refer to the steps of Android system above for operation.

9.43.5 Add the xht11 and ESP32Servo libraries

If you have not downloaded the library file, please click on the link to download it:Download Arduino Libraries

This code uses two libraries named “xht11” and “ESP32Servo” , if you haven’t installed them yet, please do so before
learning. The steps to add third-party libraries are as follows:

9.43.6 Project code

After the xht11 and ESP32Servo libraries were added, You can open the code we provideIf you haven’t downloaded
the code file, please click on the link to download itDownload Arduino C Codes file

The code used in this project is saved in folder(path:) “Arduino-Codes\Project 40WiFi Smart
Home\Project_40_WiFi_Smart_Home”.

//**
/*
* Filename : WiFi Smart Home.
* Description : WiFi APP controls Multiple sensors/modules work to achieve the effect␣
→˓of WiFi smart home.
* Auther : http//www.keyestudio.com
*/
#include <Arduino.h>
#include <WiFi.h>
#include <ESPmDNS.h>
#include <WiFiClient.h>

(continues on next page)

814 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

#include "xht11.h"
//gpio15
xht11 xht(15);
unsigned char dht[4] = {0, 0, 0, 0};

#include <ESP32Servo.h>
Servo myservo;
int servoPin = 4;
#define Relay 32
#define IN1 19 //IN1 corresponds to IN+
#define IN2 18 //IN2 corresponds to IN-
#define trigPin 14
#define echoPin 27

int distance1;
String dis_str;
int ip_flag = 1;
int ultra_state = 1;
int temp_state = 1;
int humidity_state = 1;

String item = "0";
const char* ssid = "ChinaNet-2.4G-0DF0"; //the name of user's wifi
const char* password = "ChinaNet@233"; //the password of user's wifi
WiFiServer server(80);
String unoData = "";

void setup() {
Serial.begin(115200);
pinMode(Relay, OUTPUT);
myservo.setPeriodHertz(50);
myservo.attach(servoPin, 500, 2500);
pinMode(IN1, OUTPUT);
pinMode(IN2, OUTPUT);

WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(500);
Serial.print(".");

}
Serial.println("");
Serial.print("Connected to ");
Serial.println(ssid);
Serial.print("IP address: ");
Serial.println(WiFi.localIP());
server.begin();
Serial.println("TCP server started");
MDNS.addService("http", "tcp", 80);

digitalWrite(IN1, LOW);
digitalWrite(IN2, LOW);
digitalWrite(Relay, LOW);

(continues on next page)

9.43. Project 40WiFi Smart Home 815

keyestudio WiKi

(continued from previous page)

pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);

}

void loop() {
WiFiClient client = server.available();
if (!client) {

return;
}
while(client.connected() && !client.available()){

delay(1);
}
String req = client.readStringUntil('\r');
int addr_start = req.indexOf(' ');
int addr_end = req.indexOf(' ', addr_start + 1);
if (addr_start == -1 || addr_end == -1) {

Serial.print("Invalid request: ");
Serial.println(req);
return;

}
req = req.substring(addr_start + 1, addr_end);
item=req;
Serial.println(item);
String s;
if (req == "/")
{

IPAddress ip = WiFi.localIP();
String ipStr = String(ip[0]) + '.' + String(ip[1]) + '.' + String(ip[2]) + '.' +␣

→˓String(ip[3]);
s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n<!DOCTYPE HTML>\r\n<html>

→˓Hello from ESP32 at ";
s += ipStr;
s += "</html>\r\n\r\n";
Serial.println("Sending 200");
client.println(s);

}
else if(req == "/btn/0")
{
Serial.write('a');
client.println(F("turn on the relay"));
digitalWrite(Relay, HIGH);

}
else if(req == "/btn/1")
{
Serial.write('b');
client.println(F("turn off the relay"));
digitalWrite(Relay, LOW);

}
else if(req == "/btn/2")
{
Serial.write('c');
client.println("Bring the steering gear over 180 degrees");

(continues on next page)

816 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

myservo.write(180);
delay(200);

}
else if(req == "/btn/3")
{
Serial.write('d');
client.println("Bring the steering gear over 0 degrees");
myservo.write(0);
delay(200);

}
else if(req == "/btn/4")
{
Serial.write('e');
client.println("esp32 already turn on the fans");
digitalWrite(IN1, LOW);
digitalWrite(IN2, HIGH);

}
else if(req == "/btn/5")
{
Serial.write('f');
client.println("esp32 already turn off the fans");
digitalWrite(IN1, LOW);
digitalWrite(IN2, LOW);

}
else if(req == "/btn/6")
{
Serial.write('g');
while(Serial.available() > 0)
{
unoData = Serial.readStringUntil('#');
client.println("Data");

}
while(ultra_state>0)

{
Serial.print("Distance = ");
Serial.print(checkdistance());
Serial.println("#");
Serial1.print("Distance = ");
Serial1.print(checkdistance());
Serial1.println("#");
int t_val1 = checkdistance();
client.print("Distance(cm) = ");
client.println(t_val1);
ultra_state = 0;

}
}
else if(req == "/btn/7")
{
Serial.write('h');
client.println("turn off the ultrasonic");
ultra_state = 1;

}

(continues on next page)

9.43. Project 40WiFi Smart Home 817

keyestudio WiKi

(continued from previous page)

else if(req == "/btn/8")
{
Serial.write('i');
while(Serial.available() > 0)
{
unoData = Serial.readStringUntil('#');
client.println(unoData);
}
while(temp_state>0)
{
if (xht.receive(dht)) {

Serial.print("Temperature = ");
Serial.print(dht[2],1);
Serial.println("#");
Serial1.print("Temperature = ");
Serial1.print(dht[2],1);
Serial1.println("#");
int t_val2 = dht[2];
client.print("Temperature(℃) = ");
client.println(t_val2);

}
temp_state = 0;

}
}
else if(req == "/btn/9")
{
Serial.write('j');
client.println("turn off the temperature");
temp_state = 1;

}
else if(req == "/btn/10")
{
Serial.write('k');
while(Serial.available() > 0)
{
unoData = Serial.readStringUntil('#');
client.println(unoData);

}
while(humidity_state > 0)
{
if (xht.receive(dht)) {
Serial.print("Humidity = ");
Serial.print(dht[0],1);
Serial.println("#");
Serial1.print("Humidity = ");
Serial1.print(dht[0],1);
Serial1.println("#");
int t_val3 = dht[0];
client.print("Humidity(%) = ");
client.println(t_val3);

}
humidity_state = 0;

(continues on next page)

818 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

(continued from previous page)

}
}
else if(req == "/btn/11")
{
Serial.write('l');
client.println("turn off the humidity");
humidity_state = 1;
}

//client.print(s);
client.stop();

}

int checkdistance() {
digitalWrite(14, LOW);
delayMicroseconds(2);
digitalWrite(14, HIGH);
delayMicroseconds(10);
digitalWrite(14, LOW);
int distance = pulseIn(27, HIGH) / 58;

delay(10);
return distance;

}
//**

Special attention: you need to change the user’s Wifi name and Wifi password in the experiment code to your own
Wifi name and Wifi password.

media/9ddee42d7e41abd8a6db60d447cd9f68.png

9.43.7 Project result

After making sure that the Code is modified correctly, external power supply and power on, and then compile
and upload the code to ESP32.Note: If uploading the code fails, you can press the Boot button on ESP32 after

click

media/d09c4a31563f04a42d451e7bc1a5fb8a.png

, and release the Boot button

media/dc77bfcf5851c8f43aab6cbe7cec7920.png

after the percentage of uploading progress ap-
pears)open the serial monitor and set baud rate to 115200.

You need to press the reset button on the ESP32 mainboard first. In this way, the serial port monitor prints the detected
WiFi IP address,(If open the serial monitor and set the baud rate to 115200, the information is not displayed, please
press the RESET button of the ESP32)

9.43. Project 40WiFi Smart Home 819

keyestudio WiKi

media/1fd21fafd84d2b529931a89d21a03d6a.png

Then open the WiFi APP and enter the detected WiFi IP address in the text box in front of the WiFi button (for example,
the IP address shown by the serial port monitor below :192.168.0.156), then click the WiFi button, “Hello from ESP32
at 192.168.0.156”is displayed in the text box next to the WiFi IP address, indicating that the APP is already connected
to WiFi.(WiFi IP address sometimes changes, if the original IP address doesn’t work, you need to re-check the WiFi IP
address)

media/ac1bd20a153c3abc5c0c62a416446f52.jpeg

After the APP has been connected to WiFi, the following operations will be performed:

1) Click

media/5b9754cb6ec4f995c9eada1da89a8969.png

button, the relay will be opened, the APP will display

media/505b00b0e23f6498c5d51d5d775c8fcb.png

and the indi-

cator lights up on the module. Click

media/5b9754cb6ec4f995c9eada1da89a8969.png

again, the relay will be closed, the APP will display

820 Chapter 9. RaspberryPi Arduino

keyestudio WiKi

media/deb54a77cdcc87d7569e8b8e46de129f.png

and the indicator on the module is off.

2. Click

media/c54f78d819d4e6a8310eaeb79ff66910.png

buttonthe servo rotates 180°the APP will display

media/c54f78d819d4e6a8310eaeb79ff66910.png

againthe APP will dis-

play

media/dee12bee3866542bfe5d70a539f79f0b.png

the servo rotates 0°.

3) Click

media/5490abf5b2f8a1d9cea3055da07c251c.png

buttonthe motorwith small fan bladesrotatesthe APP will

display

media/5490abf5b2f8a1d9cea3055da07c251c.png

againclose the motorthe APP will display

media/de6da02ede6d63344546173d36bf5371.png

4) Click

media/95bfbe879d2391e4e48dcae085abe5a6.png

buttonthe ultrasonic sensor detects the distance, put an object in front of the ultrasonic

sensor, the APP will display

media/e431e1b9c95bed37b053ae9617f93676.png

different distances show different numbers, the distance between

the object and the ultrasonic sensor is 6cmclick

media/95bfbe879d2391e4e48dcae085abe5a6.png

again, turn off the sensor, the APP will display

9.43. Project 40WiFi Smart Home 821

keyestudio WiKi

media/b1df35af68601022e54b7e575b0a07c7.png

.

5) Click

media/08c8a35841b31fa4b5327fb7b23a7af5.png

buttonthe temperature and humidity sensor measures the temperature in the environment,

the APP will display

media/0aafd0af43f80b692eca3d6732b551b2.png

different temperatures show different temperature valuesthe ambient tem-

perature is 30 ° C, click

media/08c8a35841b31fa4b5327fb7b23a7af5.png

again, turn off the sensorthe APP will display

media/82887a1385bc7411ecbdc41f60ebd450.png

.

6) Click

media/d8e3463ab2f644b3300cdeaa2a68e4c2.png

buttonthe temperature and humidity sensor measures the humidity in the environ-

ment,the APP will display

media/320b86323631e095db330a22ca97bad7.png

different humiditys show different humiditys values, the ambient

humidity is 55%click

media/d8e3463ab2f644b3300cdeaa2a68e4c2.png

againturn off the sensor, the APP will display

media/adc18d06e626af067286da9040c20252.png

.

822 Chapter 9. RaspberryPi Arduino

	1.Introduction：
	2.Kit list：
	3.Keyestudio ESP32 Mainboard
	Getting started with Arduino
	Windows System：
	1.1.Download and install Arduino software：
	1.2.Install a driver on Windows：
	1.3. Install the ESP32 on Arduino IDE：
	1.4. Arduino IDE Setting:

	Mac System:
	2.1.Download and install the Arduino IDE:
	2.2.How to install the CP2102 driver：

	Arduino Project
	Download code files and Libraries files
	Project 01: Hello World
	Project 02: Turn On LED
	Project 03：LED Flashing
	Project 04: Breathing Led
	Project 05：Traffic Lights
	Project 06: RGB LED
	Project 07: Flowing Water Light
	Project 08：1-Digit Digital Tube
	Project 09：4-Digit Digital Tube
	Project 10：8×8 Dot-matrix Display
	Project 11：74HC595N Control 8 LEDs
	Project 12：Active Buzzer
	Project 13：Passive Buzzer
	Project 14: Mini Table Lamp
	Project 15：Tilt and LED
	Project 16：Burglar Alarm
	Project 17： I2C 128×32 LCD
	Project 18：Small Fan
	Project 19：Servo Sweep
	Project 20：Stepping Motor
	Project 21：Relay
	Project 22：Dimming Light
	Project 23：Flame Alarm
	Project 24：Night Lamp
	Project 25：Human Induction Lamp
	Project 26：Sound Control Fan
	Project 27：Temperature Measurement
	Project 28：Rocker control light
	Project 29：Temperature Humidity Meter
	Project 30：Ultrasonic Ranger
	Project 31：Temperature Instrument
	Project 32：RFID
	Project 33：Keypad Door
	Project 34：IR Control Sound and LED
	Project 35：Bluetooth
	Project 36：WiFi Station Mode
	Project 37：WiFi AP Mode
	Project 38：WiFi Station+AP Mode
	Project 39: WiFi Test
	Project 40：WiFi Smart Home

	Getting started with Python
	1.Installing Thonny (Important)：
	(1) Downloading Thonny：
	(2) Install Thonny on Windows：

	2. Basic Configuration of Thonny：
	3.Installing CP2102 driver：
	Windows System
	MAC System

	4.Burning Micropython Firmware (Important)
	(1) Downloading Micropython firmware
	(2) Burning a Micropython Firmware

	5.Test Code：
	6.Thonny Common operations：

	Python Project
	Download code files
	Project 01: Hello World
	1. Introduction：
	2. Components：
	3. Wiring：
	4. Running code online：
	5. Project code：

	Project 02: Turn on LED
	1.Introduction：
	2.Components：
	3.Component knowledge：
	（1）LED:
	（2）Five-color ring resistor
	（3）Breadboard
	(4) Power Supply

	4.Wiring diagram：
	5.Project code：

	Project 03：LED Flashing
	1.Introduction：
	2.Components：
	3.Wiring diagram：
	4.Project code：

	Project 04: Breathing Led
	1.Introduction：
	2.Components：
	3.Component knowledge：
	Analog & Digital:
	PWM：
	ESP32 and PWM:

	4.Wiring diagram：
	5. Project code：
	6. Project result：

	Project 05：Traffic Lights
	1.Introduction：
	2.Components：
	3. Wiring diagram：
	4. Project code：
	5.Project result：

	Project 06: RGB LED
	1.Introduction：
	2.Components：
	3. Component knowledge：
	4.Wiring diagram：
	5.Project code：
	Project result：

	Project 07: Flowing Water Light
	1.Introduction：
	2.Components：
	3.Wiring diagram :
	4.Project code：
	5. Project result：

	Project 08：1-Digit Digital Tube
	1.Introduction：
	2.Components：
	3. Component knowledge：
	4.Wiring diagram：
	5.Project code：
	6.Project result：

	Project 09：4-Digit Digital Tube
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Wiring diagram：
	5. Project code：
	6. Project result：

	Project 10：8×8 Dot-matrix Display
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Wiring diagram：
	5.Project code：
	6.Project result：

	Project 11：74HC595N Control 8 LEDs
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4. Wiring diagram：
	5. Project code：
	6.Project result：

	Project 12：Active Buzzer
	1.Introduction：
	2.Components：
	3. Component knowledge：
	4.Wiring diagram：
	5.Project code：
	6.Project result：

	Project 13：Passive Buzzer
	1.Introduction:
	2.Components：
	3.Component knowledge：
	4.Wiring diagram:
	5.Project code：
	6.Project result：

	Project 14: Mini Table Lamp
	1.Introduction：
	2.Components：
	3. Component knowledge：
	4.Wiring Diagram：
	5.Project code：
	6.Project result：

	Project 15：Tilt and LED
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4. Wiring Diagram：
	5.Project code：
	6.Project result：

	Project 16：Burglar Alarm
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4. Wiring Diagram：
	5.Project code：
	6.Project result：

	Project 17： I2C 128×32 LCD
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Wiring Diagram：
	5.Project code：
	6.Project result：

	Project 18：Small Fan
	1.Introduction：
	2.Components：
	3.Component knowledge :
	4. Wiring Diagram：
	5.Project code：
	6.Project result：

	Project 19：Servo Sweep
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Wiring Diagram：
	5.Project code：
	6.Project result：

	Project 20：Stepping Motor
	1.Introduction：
	2.Components：
	3.Component knowledge :
	4.Wiring Diagram：
	5.Project code：
	6.Project result：

	Project 21：Relay
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4. Wiring Diagram：
	5.Project code：
	6.Project result：

	Project 22：Dimming Light
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Read the ADC value, DAC value and voltage value of the potentiometer：
	5.Wiring diagram of the dimming lamp：
	6.Project code：
	7.Project result：

	Project 23：Flame Alarm
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Read the ADC value, DAC value and voltage value of the flame sensor：
	5.Wiring diagram of the flame alarm：
	6.Project code：
	7.Project result：

	Project 24：Night Lamp
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Read the ADC value, DAC value and voltage value of the photoresistor：
	5.Wiring diagram of the light-controlled lamp：
	6.Project code：
	7.Project result：

	Project 25：Human Induction Lamp
	1.Introduction：
	2.Components：
	3.Wiring Diagram：
	4.Project code：
	5.Project result：

	Project 26：Sound Control Fan
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Read the ADC value, DAC value and voltage value of the sound sensor：
	5.Wiring diagram of the intelligent fan：
	6.Project code：
	7.Project result：

	Project 27：Temperature Measurement
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Read the temperature value of the LM35：
	5.Diagram of the temperature measurement：
	6.Project code：
	7.Project result：

	Project 28：Rocker control light
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Read the value of the Rocker Module：
	5.Wiring diagram：
	6.Project code：
	7.Project result：

	Project 29：Temperature Humidity Meter
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Read temperature and humidity value：
	5.Wiring diagram of the thermohygrometer：
	6.Project code：
	7.Project result：

	Project 30：Ultrasonic Ranger
	Introduction：
	Components：
	Component knowledge：
	Read the distance value of the ultrasonic sensor:
	Wiring diagram of the ultrasonic rangefinder：
	Project code：
	Project result：

	Project 31：Temperature Instrument
	Introduction：
	Components：
	Component knowledge：
	Read the value of the Thermistor：
	Wiring diagram of the temperature instrument：
	Project code：
	Project result：

	Project 32：RFID
	Introduction：
	Components：
	Component knowledge：
	RFID Read UID：
	Wiring diagram of the RFID MFRC522：
	Project code：
	Project result：

	Project 33：Keypad Door
	Introduction：
	Components：
	Component knowledge：
	Read the key value of the 4*4 matrix keyboard：
	Wiring diagram of the Keypad Door：
	Project code：
	Project result：

	Project 34：IR Control Sound and LED
	Introduction：
	Components：
	Component knowledge：
	Decoded infrared signal：
	Wiring diagram of the infrared remote control：
	Project code：
	Project result：

	Project 35：WiFi Station Mode
	Introduction：
	Components：
	Project wiring：
	Component knowledge：
	Project code：

	Project result：
	Project 36：WiFi AP Mode
	Introduction：
	Components：

	Project wiring：
	Component knowledge：
	Project code：

	Project result：
	Project 37：WiFi Station+AP Mode
	Introduction：
	Components：
	Project wiring：
	Component knowledge：
	Project code：
	Project result：

	Getting started with C (Raspberry Pi)
	Install the Raspberry Pi OS System：
	1. Tools needed for the Raspberry Pi system：
	1.1. Hardware Tool：
	1.2. Software tools that need to be installed：
	（1）Install putty
	（2）Remote Login software -WinSCP
	（3）Format TFT card tool– SD Card Formatter
	（4）Burn mirror system software tool— Win32DiskImager

	1.3. Raspberry PI mirror system

	2. Install Raspberry Pi OS system on Raspberry Pi 4B:
	2.1. Interface the TFT memory card with a card reader, then plug the card reader into a computer’s USB port.
	2.2. Use the SD Card Formatter to format a TFT memory card, as illustrated below：
	2.3. Burn system:
	2.4. Log in system:
	（1）Preparation
	（2）Remote login
	（3）View the ip address and mac address
	（4）Fix the IP address of Raspberry Pi
	（5）Log in desktop on Raspberry Pi wirelessly

	3. Preparation of C language control basic hardware:
	(1)Description of basic raspberry pi accessories：
	(2)Raspberry Pi +ESP32 mainboard + breadboard +USB cable, as shown below：
	(3)Copy Example Code Folder to Raspberry Pi：

	Linux System（Raspberry Pi）：
	1. Download and install Arduino IDE：
	2. Install the ESP32 on Arduino IDE：
	3. Arduino IDE Settings and toolbars:

	Import the Arduino C library
	What are Libraries ?

	RaspberryPi Arduino
	Download code files and Libraries files
	Project 01: Hello World
	1.Introduction：
	2.Components：
	3.Components：
	4.Project code：
	5.Project result：

	Project 02: Turn On LED
	1.Introduction：
	2.Components：
	3.Component knowledge：
	4.Wiring diagram：
	5.Project code：
	6.Project result：

	Project 03：LED Flashing
	Introduction：
	Components：
	Wiring diagram：
	Project code：
	Project result：

	Project 04: Breathing Led
	Introduction：
	Components：
	Component knowledge：
	Analog & Digital
	PWM：
	ESP32 and PWM:

	Wiring diagram：
	Project code：
	Project result：

	Project 05：Traffic Lights
	Introduction：
	Components：
	Wiring diagram：
	Project code：
	Project result：

	Project 06: RGB LED
	Introduction：
	Components：
	Component knowledge：
	Wiring diagram：
	Project code：
	Project result：

	Project 07: Flowing Water Light
	Introduction：
	Components：
	Wiring diagram:
	Project code：
	Project result：

	Project 08：1-Digit Digital Tube
	Introduction：
	Components：
	Component knowledge：
	Wiring diagram：
	Project code：
	Project result：

	Project 09：4-Digit Digital Tube
	Introduction：
	Components：
	Component knowledge：
	Wiring diagram：
	Adding the TM1650 library：
	Project code：
	Project result：

	Project 10：8×8 Dot-matrix Display
	Introduction：
	Components：
	Component knowledge：
	Wiring diagram：
	Adding the HT16K33_Lib_For_ESP32 library：
	Project code：
	Project result：

	Project 11：74HC595N Control 8 LEDs
	Introduction：
	Components：
	Component knowledge：
	Wiring diagram：
	Project code：
	Project result：

	Project 12：Active Buzzer
	Introduction：
	Components：
	Component knowledge：
	Wiring diagram：
	Project code：
	Project result：

	Project 13：Passive Buzzer
	Introduction:
	Components：
	Component knowledge：
	Wiring diagram:
	Project code：
	Project result：

	Project 14: Mini Table Lamp
	Introduction：
	Components：
	Component knowledge：
	Wiring Diagram：
	Project code：
	Project result：

	Project 15：Tilt and LED
	Introduction：
	Components：
	Component knowledge：
	Project code：
	Project result：

	Project 16：Burglar Alarm
	Introduction：
	Components：
	Component knowledge：
	Wiring Diagram：
	Project code：
	Project result：

	Project 17： I2C 128×32 LCD
	Introduction：
	Components：
	Component knowledge：
	Wiring Diagram：
	Adding the lcd128_32_io library：
	Project code：
	Project result：

	Project 18：Small Fan
	Introduction：
	Components：
	Component knowledge :
	Wiring Diagram：
	Project code：
	Project result：

	Project 19：Servo Sweep
	Introduction：
	Components：
	Component knowledge：
	Wiring Diagram：
	Adding the ESP32Servo library：
	Project code：
	Project result：

	Project 20：Stepping Motor
	Introduction：
	Components：
	Component knowledge：
	Wiring Diagram：
	Project code：
	Project result：

	Project 21：Relay
	Introduction：
	Components：
	Component knowledge：
	Wiring Diagram：
	Project code：
	Project result：

	Project 22：Dimming Light
	Introduction：
	Components：
	Component knowledge：
	Read the ADC value，DAC value and voltage value of the potentiometer：
	Wiring diagram of the dimming lamp：
	Project code：
	Project result：

	Project 23：Flame Alarm
	Introduction：
	Components：
	Component knowledge：
	Read the ADC value，DAC value and voltage value of the flame sensor：
	Wiring diagram of the flame alarm：
	Project code：
	Project result：

	Project 24：Night Lamp
	Introduction：
	Components：
	Component knowledge：
	Wiring diagram of the light-controlled lamp：
	Project code：
	Project result：

	Project 25：Human Induction Lamp
	Introduction：
	Components：
	Wiring Diagram：
	Project code：
	Project result：

	Project 26：Sound Control Fan
	Introduction：
	Components：
	Component knowledge：
	Read the ADC value，DAC value and voltage value of the sound sensor：
	Wiring diagram of the intelligent fan：
	Project code：
	Project result：

	Project 27：Temperature Measurement
	Introduction：
	Components：
	Component knowledge：
	Read the temperature value of LM35：
	Project result：
	Wiring diagram
	Project code：
	Project result：

	Project 28：Rocker control light
	Introduction：
	Components：
	Component knowledge：
	Read the value of the Rocker Module：
	Wiring diagram of Rocker control light：
	Project code：
	Project result：

	Project 29：Temperature Humidity Meter
	Introduction：
	Components：
	Component knowledge：
	Read temperature and humidity value：
	Project code：
	Project result：

	Project 30：Ultrasonic Ranger
	Introduction
	Components：
	Component knowledge：
	Read the distance value of the ultrasonic sensor:
	Wiring diagram of the ultrasonic rangefinder：
	Project code：
	Project result：

	Project 31：Temperature Instrument
	Introduction：
	Components：
	Component knowledge：
	Read the value of the Thermistor：
	Wiring diagram of the temperature instrument：
	Adding the lcd128_32_io library：
	Project code：
	Project result：

	Project 32：RFID
	Introduction：
	Components：
	Component knowledge：
	RFID Read UID：
	Wiring diagram of the RFID MFRC522：
	Adding the MFRC522_I2C, Wire and ESP32Servo libraries：
	Project code：
	Project result：

	Project 33：Keypad Door
	Introduction：
	Components：
	Component knowledge：
	Read the key value of the 4*4 matrix keyboard：
	Wiring diagram of the Keypad Door：
	Project code：
	Project result：

	Project 34：IR Control Sound and LED
	Introduction：
	Components：
	Component knowledge：
	Decoded infrared signal：
	Wiring diagram of the infrared remote control：
	Project code：
	Project result：

	Project 35：Bluetooth
	Project 35.1：Classic Bluetooth
	Components：
	Component knowledge：
	Wiring Diagram：
	Project code：
	Project result：

	Project 35.2：Bluetooth Control LED
	Components：
	Wiring diagram：
	Project code：
	Project result：

	Project 36：WiFi Station Mode
	Introduction：
	Components：
	Wiring：
	Component knowledge：
	Project code：

	Project 37：WiFi AP Mode
	Introduction：
	Components：
	Wiring：
	Component knowledge：
	Project code：
	Project result：

	Project 38：WiFi Station+AP Mode
	Introduction：
	Components：
	Wiring：
	Component knowledge：
	Project code：
	Project result：

	Project 39: WiFi Test
	Introduction：
	Components：
	Wiring：
	Install APP:
	Project code：

	Project 40：WiFi Smart Home
	Introduction：
	Components：
	Wiring diagram：
	Install APP:
	Add the xht11 and ESP32Servo libraries：
	Project code：
	Project result：

